Strukturaufklärung in der

molekularen anorganischen Chemie

9. Gasphasen-Elektronenbeugung

Gasphasen-Elektronenbeugung

F															
',	γ-ray	Ha X-r	rd S ay X-	oft Vac ray U	uum Ne IV U	ear Vis IV blue	ible N red	lear IR	Mid IR	Far IR	Sub- mmw	mm- wave	Micro- wave	Radio wave	-
4	- < 0	.1Å	5Å	100Å	2000Å	400 pm	0.7 μπ	1 2.5	μm 25	μm	1 n	nm	10 c	m →	·] λ
	> '	0 ⁹	2×10^7	10 ⁶	5×10 ⁴	2.5×10 ⁴	1.4×10	⁴ 40	00 4	100	1	0	0.1		 ν / cm⁻¹
	1.2>	<10 ⁷	2.4×10 ⁵	1200	600	300	170	4	8 4	4.8	0.	12	1.2×1	0-3 -	E / kJ mol ⁻¹
	120	000	2400	120	6	3	1.7	0.	5 0	.05	0.0	001	0.000	01	E∕eV
	3×1	0 ¹⁹	6×10 ¹⁷	3×10 ¹⁶	1.5×10 ¹⁵	7.5×1014	4×10 ¹	4 1.2×	1014 1.2	×10 ¹³	3×1	I 0 ¹¹	3×10) ⁹	ν / Hz

Gasphasen-Elektronenbeugung \equiv Gasphasen-Elektronendiffraktion (GED)

Ultrafast Gasphasen-Elektronendiffraktion (UED)

λ: ~**0.05** Å (GED); ~**0.003** Å (UED)

Charakteristische Zeit: ~10⁻¹⁸ Sek.

GED

Wechselwirkung mit Strahlung:

- (Optische/Radio) Spektroskopie
- Streuung/Diffraktion
- Resonanzmethode
- Elektrische Methode
- Ionisation

Probe Beeinflussung:

- Destruktiv
- Nicht destruktiv

Anwendung:

- Identifizierung/Sauberkeit
- Elementaranalyse
- Chemische Gruppen
- Chemische Konnektivität
- Konformations-Eigenschaften
- Symmetrie
- Geometrie (Längen, Winkel)
- <u>Schwingungen</u>
- Elektronische Struktur (/Dichte)
- (Elektrische) Dipolmomente

Charakteristische Zeit:

- Langsame Methode
- Mittelschnelle Methode
- Schnelle Methode

Aggregatzustand der Probe:

- <u>Gas</u>
- Flüssigkeit
- Feststoff

GED: prinzipielles Schema

GED in Bielefeld

Y. V. Vishnevskiy et al., *Rev. Sci. Instrum.* 2020, 91, 073103.

Elektronenquelle

Glühkathode
Wehneltzylinder
Anodenblende

Diffraktionskammer

Kühlfa

Kühlfalle für flüssigen N₂ (77.355 K = -195.795 °C)

Detektorsystem

Detektorsystem

CCD – Charge-coupled device
IP – Imaging plate
CMOS – Complementary metal-oxide-semiconductor

	Photo	CCD	IP	CMOS
Auflösung	+	+/-	+/-	-
Dynamic range		+/-	+	++
Empfindlichkeit	+/-	+	+	++
Größe	++		+	+
Ablesung		+	+/-	+
Wiederverwendung		++	+	++
Preis	++	+/-	+/-	

Imaging Plate Detektor

Imaging plates: Flexible Polyester-Basis überzogen mit hochdispersem Bariumfluorohalogenid dopiert mit Eu²⁺ [BaF(Br,I):Eu²⁺]

Die Elektronenenergie wird in Form von "trapped electrons" als angeregte 'F-Zentren' und Eu²⁺-Ionen-Löchern gespeichert.

F-Zentren: Absorption ~ 600 nm

Scannen: (He-Ne-Laser 633 nm) "trapped electrons" werden freigesetzt und vereinigen sich mit den Eu²⁺-Löchern.

Photonen von ~400 nm werden emittiert, d. h. photo-stimulierte Lumineszenz.

Messungen auf IPs

Kameraabstände

sM(s)

Beugungsmuster: C₆H₆

LK (*L* = 500 mm)

MK (*L* = 250 mm)

Vom Beugungsbild zu *I*_m

Ein Abstand: N₂

$$sM(s) = g_{NN} e^{\frac{-l^2 s^2}{2}} \frac{\sin(sr)}{sr}$$

Eine Periode = $50.6/9 = 5.62 \text{ Å}^{-1}$ Frequenz = $2\pi/5.62 = 1.12 \text{ Å}$

r(N-N) = 1.12 Å

Fourier-Transformation: RDF

Radial distribution function (RDF)

Zwei unterschiedliche Abstände: CCl₄

17

Zwei Abstände: CO₂

sM(s) =

Gemittelte Struktur: CO₂

R. J. Mawhorter, M. Fink, B. T. Archer, J. Chem Phys. 79 (1983) 170

Shrinkage Effekt

 $r_{g} = <r>$ $r_{a} = <1/r>^{-1}$

Beispiel: $HgBr_2$ <_a(Br–Hg–Br) ~ 170°

Korrekturen zu geometrisch konsistent Strukturen: (r_{h0}, r_{h1}, r_{e}) :

- Störungstheorie Kraftfelder + XYZ
- Molekulardynamik Trajektorie

 $r_{a}(B...B) < 2r_{a}(A-B)$

Atomabstandsparameter

- *r*_a thermisch gemittelter Abstand direkt aus GED zugänglich
- *r*_e Abstand der Atome im Gleichgewicht (Potentialminimum)
- *r*_g thermisch gemittelter Abstand
- *r*_α Abstand zwischen mittleren Kernpositionen im thermischen Gleichgewicht bei Temperatur T
- r_{α}^{0} , r_{z} Abstand zwischen mittleren Kernpositionen im Schwingungsgrundzustand

Normalerweise für Bindungen: $r_{e} < r_{\alpha}^{0} < r_{\alpha} \approx r_{a} < r_{g}$

Thermisch gemittelte Struktur

K. B. Borisenko et all., Dalton Trans. 2004, 3878.

Geometrie Verfeinerung: Z-Matrix

$$(r, <, \varphi) \rightarrow (x, y, z) \rightarrow r_{e,ij} \rightarrow r_{a,ij} \rightarrow SM(s)$$

Vorteile: direkte Kontrolle für Parameter, Δp fixieren.

Nachteile: keine Kontrolle für abhängige Parameter, sub-optimale Z-Matrizen.

Parameter Verfeinerung

Methode der kleinsten Quadrate:

 $Q = \sum [sM(s)_{exper} - sM(s)_{modell}]^2 \rightarrow min$

Mit Regularisierung:

$$Q = \sum [sM(s)_{exper} - sM(s)_{modell}]^2 + \alpha \times \sum [p_0 - p_{modell}]^2 \rightarrow min$$

Mit zusätzlichen Daten:

$$Q = \sum [sM(s)_{exper} - sM(s)_{modell}]^{2} + \alpha \times \sum [B_{exper} - B_{modell}]^{2} + \beta \times \sum [\nu_{exper} - \nu_{modell}]^{2} + \gamma \times \sum [D_{exper} - D_{modell}]^{2} \rightarrow min$$

- Rotationskonstanten
- Schwingungsfrequenzen
- Dipolar Coupling Konstanten

 α , β , γ – Gewichte.

GED + MW

Probleme: MW: ¹⁹F, C -> Schwerpunkt. GED: Korrelation *r*(C=C)/*r*(C–F)

25

GED+MW: $r_{g}(C=C) = 1.340(6) \text{ Å}$ $r_{g}(C-F) = 1.315(3) \text{ Å}$

F. C. Mijlhoff, G. H. Renes, K. Kohata, K. Oyanagi, K. Kuchitsu, *J. Mol. Struct.* 39 (1977) 241.

RDF Auflösung

F. C. Mijlhoff, G. H. Renes, K. Kohata, K. Oyanagi, K. Kuchitsu, *J. Mol. Struct.* 39 (1977) 241.

26

RDF Auflösung

Y. B. Martínez et al., J. Mol. Struct. 2017, 1132, 175.

RDF Modellierung

Peter Heinrichs: 1,3,5-Me₃-1,3,5-(C≡CAuPMe₃)₃-1,3,5-trisilacyclohexan

28

Konformerverhältnisse

$$sM(s)_{total} = x_1 \times sM(s)_{mol 1} + x_2 \times sM(s)_{mol 2}$$
$$x_1 + x_2 = 1$$

1,5-diazabicyclo[3.1.0]hexan (DABH) J. Phys. Chem. A, 112 (2008) 5243

Konformerverhältnis: 3,3-Me₂-DABH

Dynamisches Modell: 6,6-Me₂-DABH

Boltzmann Verteilung:

 $P(\phi) \sim e^{rac{-V(\phi)}{kT}}$

J. Phys. Chem. A, 119 (2015) 10871

LAM Coordinate,

Größte Moleküle in GED

Magnesium octa(m-trifluoromethylphenyl)porphyrazin Symmetrie: D_4 (50 geom. Freiheitsgrade)

*r*_{max} ≈ 20 Å

Y. A. Zhabanov, A. V. Zakharov, N. I. Giricheva, S. A. Shlykov, O. I. Koifman, G. V. Girichev, *J. Mol. Struct.* 1092 (2015) 104.

Größte Moleküle in GED

 Si_6Tip_6 , $Tip = 2,4,6-iPr_3C_6H_2$

GED @ Uni-Bielefeld

Symmetrie: C_1 (696 geom. Freiheitsgrade) $r_{\text{max}} \approx 20 \text{ Å}$

Molekül(e) des Tages

X(YH₃) ₃: flach oder pyramidal?									Y							? * * *			
	1*	1																18	1
1	н	2											13	14	15	16	17	Не	
0	3	4											5	6	7	8	9	10	
2	Li	Be											В	С	Ν	0	F	Ne	
0	11	12											13	14	15	16	17	18	
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar	
1	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
0	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe	
0	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
0	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
7	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
1	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og	

Trimethylamin N(CH₃)₃

Trisilylamin N(SiH₃)₃

Trisilylphosphin P(SiH₃)₃

Vibrational Spectra of Trisilylphosphine: Evidence for Planar PSi₃ Structure

By G. DAVIDSON, E. A. V. EBSWORTH, G. M. SHELDRICK, and L. A. WOODWARD

[Inorganic Chemistry Laboratory, Oxford University (G.D. and L.A.W.), and University Chemical Laboratory, Cambridge (E.A.V.E. and G.M.S.)]

Davidson et al. (1965) IR+Raman: flach (!?)

Beagley et al. (1967, 1977) GED: **pyramidal**, α (Si-P-Si) = 96.8(5)°

Natural bond orbital (NBO), Ladungen

N(CH₃)₃: N(SiH₃)₃: P(

P(CH₃)₃: P(SiH₃)₃:

q(N) = -0.5	q(N) = -1.7	q(P) = 0.7	q(P) = -0.5
<i>q</i> (C) = -0.4	q(Si) = 1.1	q(C) = -0.9	q(Si) = 0.6
q(H) = 0.2	<i>q</i> (H) = -0.2	q(H) = 0.2	q(H) = -0.1

N(SiH₃)₃: NBO Wechselwirkungen

6 x	n(N) → σ*(Si-H)	$E^{(2)} = -6.0 \text{ kcal/mol}$
3 x	n(N) → σ*(Si-H)	< 0.5 kcal/mol

NLMO *d*E zur sterischen Energie [kcal/mol]: n(N) -1.4 σ (N–Si) 59.5 (je Orb.) σ (Si–H) 4.8 (je Orb., gemittelt) Gesamt: **219.9** kcal/mol

NLMO *d*E zur sterischen Energie: n(N) -13.3 $\sigma(N-Si)$ 62.0 (je Orb.) $\sigma(Si-H)$ 6.0 (je Orb., gemittelt) Gesamt: **226.7** kcal/mol

α(X–Y–X): **GED** und [Theorie]

	$X = CH_3$	SiH₃	GeH₃	SnH₃	PbH₃
Y = N	110.6(2) [111.4]	119.7(3) [120.0]	120.0 [119.5]	[120.0]	[115.4]
Ρ	98.8(3) [99.4]	96.8(5) [95.2]	95.7(5) [96.2]	[95.6]	[95.7]
As	96.1(5) [97.0]	94.1(2) [92.5]	[93.7]	[92.9]	[93.3]
Sb	94.1(5) [94.5]	89.0(3) [89.4]	[90.6]	[89.4]	[90.3]
Bi	97.1(10) [93.0]	[87.1]	[88.8]	[87.4]	[88.6]

Experimentelle Daten für Gasphase

Quelle: MOGADOC 2023 (10.3K Strukturen)

Quellen/Literatur

- D. W. H. Rankin, N. W. Mitzel, C. A. Morrison, Structural Methods in Molecular Inorganic Chemistry, John Wiley & Sons, Chichester, 2013.
- G. A. Sim, L. E. Sutton, Eds., Molecular Structure by Diffraction Methods: Volumes 1 6, The Royal Society Of Chemistry, 1973 – 1977.
- J. C. Lindon, Ed., *Encyclopedia of Spectroscopy and Spectrometry*, Academic Press, Amsterdam, Boston, 2010.