Strukturaufklärung in der

molekularen anorganischen Chemie

7. Elektronische Struktur

Elektronische Struktur von H

In sphärischen Koordinaten:

$$\begin{split} &\left(-\frac{\hbar^2}{2\mu}\nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r}\right)\psi(r,\theta,\varphi) = E\psi(r,\theta,\varphi) \\ &-\frac{\hbar^2}{2\mu}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\varphi^2}\right] - \frac{e^2}{4\pi\varepsilon_0 r}\psi = E\psi \end{split}$$

Lösungen:

$$\psi_{n\ell m}(r,\theta,\varphi) = \sqrt{\left(\frac{2}{na_0^*}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-\rho/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) Y_\ell^m(\theta,\varphi) \qquad \qquad \left(\begin{array}{c} \rho = \frac{2r}{na_0^*} \\ 0 \end{array} \right) = \frac{4\pi\varepsilon_0\hbar^2}{\mu e^2} \right)$$

$$E_n=-rac{Z^2}{2n^2} ext{ hartrees}$$
Rydberg (1890): $rac{1}{\lambda}=\mathcal{R}\left(rac{1}{n_1^2}-rac{1}{n_2^2}
ight),\quad n_1=1,\ 2,\ 3...,\ n_2>n_1$

H Orbitale mit R.-Komponente

Moleküle

Symmetrie und Entartung

Symmetrie und Entartung

C_{4v}	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$		
$\overline{A_1}$	1	1	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	1	-1	-1	R_z	
B_1	1	-1	1	1	-1		x^2-y^2
B_2	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x, y) (R_x, R_y)$	(xz, yz)

p-Orbitale d-Orbitale

Symmetrie und Entartung: grafisch

Symmetrie und Entartung: mathematisch

Basis: p_x, p_y, p_z

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C_4 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad C_4^3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad C_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sigma_{v}(xz) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \sigma_{v}(yz) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\sigma_d = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_d' = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Irreduzible Darstellungen, Charaktere:

Moleküle: MOs von H₂O

(s. Vorlesung Symmetrie)

H₂O: MO Energie-Diagram

Photoelektronen-Spektroskopie

XPS- und UPS-Spektroskopie

Röntgenphotoelektronenspektroskopie, XPS: $E \sim 1000 \text{ eV}$

Ultraviolettphotoelektronenspektroskopie, UPS: $E \sim 10 - 100 \text{ eV}$

XPS, UPS

γ-ray	Ha X-r	rd ay	Soft X-ray	Vacuu UV	im Ne U	ar Vi V blu	sible e red	Ne IF	ar I ?	Mid IR	Far IR	Sub- mmw	mm- wave	Micro- wave	Radio wave	- -
← <0).1Å	5Å	1 1(00Å 0 nm	2000Å 200 nm	400 nm	0.7 700	μm nm	2.5 μn 2500 n	n 29 m	ōμm	1 r	nm	10 c	m →	λ
> '	10 ⁹	2×10	7	106	5×104	2.5×104	1.4×	104	4000	4	100	1	0	0.1		ṽ / cm⁻¹
1.2:	×10 ⁷	2.4×1	0 ⁵ 1	200	600	300	17	'0 -	48		4.8	0.	12	1.2×1	10 ⁻³	$E / kJ mol^{-1}$
120	000	2400	7 0	120	6	3	1.	/ 014	0.5	(1.05	0.0	101	0.000	01	
3×1	1019	6×10	′ 3>	×10'° 1	.5×1015	7.5×10	* 4×1	014	1.2×10	¹ 1.2	×10 ¹³	3×1	10''	3×1	0,	v/HZ

UPS: ~10 bis ~100 eV

XPS: ~ 1000 eV

XPS, UPS

Wechselwirkung mit Strahlung:

- (Optische/Radio) Spektroskopie
- Streuung/Diffraktion
- Resonanzmethode
- Elektrische Methode
- Ionisation

Probe Beeinflussung:

- Destruktiv
- Nicht destruktiv

Anwendung:

- Identifizierung/Sauberkeit
- <u>Elementaranalyse</u>
- Chemische Gruppen
- Chemische Konnektivität
- Konformations-Eigenschaften
- Symmetrie
- Geometrie (Längen, Winkel)
- <u>Schwingungen</u>
- Elektronische Struktur (/Dichte)
- (Elektrische) Dipolmomente

Charakteristische Zeit:

- Langsame Methode
- Mittelschnelle Methode
- Schnelle Methode

Aggregatzustand der Probe:

- <u>Gas</u>
- Flüssigkeit
- <u>Feststoff</u>

Photoelektronen-Spektrum: H₂O

UPS von N_2

UV/Vis

γ-ray	Ha / X-r	ırd S 'ay X-	oft Vac ray l	uum No	ear Vis JV blue	sible No ered I	ear M R I	lid R	Far IR	Sub- mmw	mm- wave	Micro- wave	Radio- wave	
← <	0.1Å	5Å	100Å	2000Å 200 pm	400 nm	0.7 μm	2.5 μm 2500 pm	25	um	1 r	nm	10 c	m →	λ
;	> 10 ⁹	$2 imes 10^7$	10 ⁶	5×104	2.5×10 ⁴	1.4×10 ⁴	4000	40	0	1	0	0.1	· [ṽ / cm⁻¹
1.	2×10 ⁷	2.4×10 ⁵	1200	600	300	170	48	4.	8	0.	12	1.2×1	10 ⁻³ -	E / kJ mol
12	20 000	2400	120	6	3	1.7	0.5	0.0)5	0.0	001	0.000	001	E/eV
3	×10 ¹⁹	6×10 ¹⁷	3×10 ¹⁶	1.5×10 ¹⁵	7.5×1014	4×10 ¹⁴	1.2×10 ¹⁴	4 1.2×	10 ¹³	3× ⁻	1011	3×1	0 ⁹	ν/ Hz

rot	≈ 790–630
orange	$\approx 630-580$
gelb	≈ <mark>580–560</mark>
grün	\approx 560–480
blau	\approx 480–420
violett	\approx 420–390

 λ : ~200 nm bis ~800 nm

τ: ~6x10⁻¹⁶ bis ~3x10⁻¹⁵ Sek

UV/Vis

Wechselwirkung mit Strahlung:

- (Optische/Radio) Spektroskopie
- Streuung/Diffraktion
- <u>Resonanzmethode</u>
- Elektrische Methode
- Ionisation

Probe Beeinflussung:

- Destruktiv
- <u>Nicht destruktiv</u>

Anwendung:

- Identifizierung/Sauberkeit
- Elementaranalyse
- Chemische Gruppen
- Chemische Konnektivität
- Konformations-Eigenschaften
- Symmetrie
- Geometrie (Längen, Winkel)
- <u>Schwingungen</u>
- Elektronische Struktur (/Dichte)
- (Elektrische) Dipolmomente

Charakteristische Zeit:

- Langsame Methode
- Mittelschnelle Methode
- Schnelle Methode

Aggregatzustand der Probe:

- <u>Gas</u>
- Flüssigkeit
- <u>Feststoff</u>

Jabłoński-Diagramm

Beispiel: Photodynamik von Acetylaceton

R. J. Squibb et al., Nat. Commun. 2018, 9, 63.

Energy (eV)

Wellenlängen

UV/Vis-Photometer

Lambert-Beer'sche Gesetz:
$$E_\lambda = \log_{10} \left(rac{I_0}{I_1}
ight) = arepsilon_\lambda \cdot c \cdot d$$

Extinktionskoeffizient Stoffmengenkonzentration Schichtdicke

Übergänge

- Spin-Verbot $(\rightarrow \text{ erlaubt } \Delta S = 0)$
- Symmetrie-Verbot (g, u)
 (→ erlaubt zwischen
 Orbitalen ungleicher Parität)
- $\begin{array}{lll} \sigma \to \sigma^* & : & \text{voll symmetrie-erlaubt} & \varepsilon = 10^3 10^4 & \lambda < 200 nm \\ \pi \to \pi^* & : & \text{voll symmetrie-erlaubt} & \varepsilon = 10^3 10^5 & \lambda > 200 nm \\ n \to \pi^* & : & \text{partiell erlaubt} & \varepsilon = 1 10^3 & \lambda > 250 nm \\ n \to \sigma^* & : & \text{partiell erlaubt} & \lambda > 200 nm \end{array}$

24

Beispiel: Acetylaceton

Ponzi et al., *Molecules* 2022, 27, 1811.

UV/Vis Chromophore

Konjugation

Konjugation

Me-Komplexe

(a) $[Co(OH_2)_6]^{2+}$

(b) [CoCl₄]²⁻

Kristallfeld- und Ligandenfeldtheorie

Kristallfeld- und Ligandenfeldtheorie

Ligandenfeldtheorie: grafisch

Abstoßungen Orbitale ↔ Liganden (in Ecken)

Jahn-Teller-, Pseudo-Jahn-Tellerund Renner-Teller-Effekte

Hermann Arthur Jahn (1907 – 1979)

Edward Teller (1908 – 2003)

Rudolf Renner (1909 – 1991)

Jahn-Teller-Effekt

MnF₃ (Mn⁰: [Ar] 3d⁵ 4s²)

High-spin (Quintet!) (Hundsche Regel!)

GED: r_g (Mn-F1)=1.728(14) Å r_g (Mn-F2)=1.754(14) Å α (F1-Mn-F2)=106.4(9) °

(Hargittai, 1997)

Jahn-Teller-Effekt: AuF₃

AuF₃ (Au⁰: [Xe] 4f¹⁴ 5d¹⁰ 6s¹)

"Low-spin" is niedriger in Energie!

Jahn-Teller-Effekt: AuF3

GED: r_g (Au-F1)=1.893(12) Å r_g (Au-F2)=1.913(8) Å (Réffy, 2000) α (F1-Au-F2)=102.5(1.9) °

Pseudo-Jahn-Teller-Effekt

Pseudo-Jahn-Teller-Effekt: Cr₂Cl₄

Rechnungen und GED (Vest, 2008):

(Nur 0.024 eV zwischen Nonet und Singlet in C_{2v} !) (Nur 0.001 eV zwischen C_{2h} und C_{2v}) Normalerweise ohne Verzerrung D_{2h}

(experimentell f. Be₂Cl₄, Mg₂Cl₄)

Renner-Teller-Effekt

Für lineare Strukturen in 2-fach-entarteten E-Zuständen!

CrCl₂ (Cr⁰: [Ar] 3d⁵ 4s¹)

GED und Rechnungen (Vest, 2008)

		CI		
Electronic state	ΔE	r(Cr–Cl)	∠Cl–Cr– Cl	Method
${}^{5}B_{2}$	0	2.193	146.7	CASSCF(16,15)
	0	2.194	167.0	CCSD(T)
	0	2.193	146.7	B3LYP
${}^{5}\Pi_{g}$	7.2	2.198	180	CASSCF(16,15)
	3.1	2.194	180	CCSD(T)
	1.9	2.198	180	B3LYP
${}^{5}\Sigma_{g}$	26.6	2.239	180	CASSCF(16,15)
	14.0	2.240	180	CCSD(T)
	15.1	2.239	180	B3LYP
		2.196(20) ^b	149(9.5)	Electron diffraction ^a

Cr

Rovibronische Spektren

A⁴Π_{3/2}-X⁴Σ⁻

Molekül(e) des Tages

Highly Efficient Reversible Z-E Photoisomerization of a Bridged Azobenzene with Visible Light through Resolved S₁($n\pi^*$) Absorption Bands

Ron Siewertsen,[†] Hendrikje Neumann,[†] Bengt Buchheim-Stehn,[‡] Rainer Herges,^{*,‡} Christian Näther,[§] Falk Renth,^{*,†} and Friedrich Temps^{*,†}

Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany, and Otto Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 6-7, D-24098 Kiel, Germany

Photoisomerisierung: UV/Vis-Spektren

Bei λ_1 =400 nm (blau) und λ_2 =490 nm (rot)

Theoretische Interpretation: Geometrie

 $\Delta E = +7.5$ kcal/mol (Ungewöhnlich!)

Typisch ist Z-Isomer höher in Energie, wie z.B.: $\Delta E = +12.5$ kcal/mol

Theoretische Interpretation: TD-DFT

Theoretische Interpretation: Übergänge

E-Isomer:

Theo. Interpretation: Photoisomerisierung

r(N~N), Gasphase MOGADOC

r(N~N), Kristalle CSD

Quellen/Literatur

- M. Hargittai, I. Hargittai, *Symmetry through the Eyes of a Chemist*, Springer, Dordrecht; New York, 2009.
- D. W. H. Rankin, N. W. Mitzel, C. A. Morrison, *Structural Methods in Molecular Inorganic Chemistry*, John Wiley & Sons, Chichester, 2013.
- C. Merten, J. Willmann: *Skript Physikalische Grundlagen der Spektroskopie*, 1. korrigierte Auflage, Universität Bremen, Mai 2005.
- M. Hargittai, Vibronic Interactions in Metal Halide Molecules, Struct. Chem. 2009, 20, 21.
- https://www.orcasoftware.de
- https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/uv-vis/spectrum.htm

Franck-Condon-Prinzip

