Strukturaufklärung in der molekularen

anorganischen Chemie

6. Rotations-Schwingunsspektroskopie

Raman und IR Ro-Vibrationsspektroskopie

γ-ray	Ha X-r	rd : ay >	Soft Va (-ray	cuum UV	Near UV	Visit blue	ole N red I	ear R	Mid IR	Far IR	Sub- mmw	mm- wave	Micro- wave	Radio wave)-)-
← < 0.	1Å	5Å	100Å	200	00Å) nm	0.7 μm 700 pm	2.5 μr	n 25	μm	1 r	mm	10 c	m ⊣	▶] <i>л</i>
> 1	0 ⁹	2×10^{7}	10 ⁶	5×	10 ⁴ 2.5	×10 ⁴	1.4×10 ⁴	4000) 4	00	1	0	0.1	1	[ν̃ / cm ^{−1}
1.2×	10 ⁷	2.4×10	⁵ 1200	60	00 3	00	170	48	4	1.8	0.	12	1.2×1	10 ⁻³	E / kJ mol
120 (000	2400	120	(6	3	1.7	0.5	0	.05	0.0	001	0.000	001	E/eV
3×1	0 ¹⁹	6×10 ¹⁷	3×101	⁶ 1.5×	(10 ¹⁵ 7.5)	×10 ¹⁴	4×10 ¹⁴	1.2×10)14 1.2	×10 ¹³	3×1	1011	3×1	0 ⁹	ν / Hz

Klassifizierung

Wechselwirkung mit Strahlung:

- (Optische/Radio) Spektroskopie
- Streuung/Diffraktion
- <u>Resonanzmethode</u>
- Elektrische Methode
- Ionisation

Probe Beeinflussung:

- Destruktiv
- Nicht destruktiv

Anwendung:

- Identifizierung/Sauberkeit
- Elementaranalyse
- <u>Chemische Gruppen</u>
- Chemische Konnektivität
- Konformations-Eigenschaften
- <u>Symmetrie</u>
- Geometrie (Längen, Winkel)
- <u>Schwingungen</u>
- Elektronische Struktur (/Dichte)
- (Elektrische) Dipolmomente

Charakteristische Zeit:

- Langsame Methode
- <u>Mittelschnelle Methode</u>
- Schnelle Methode

Aggregatzustand der Probe:

- <u>Gas</u>
- Flüssigkeit
- Feststoff

IR-Spektrum: CO-Molekül in der Gasphase

IR Rotationsschwingungsspektren

IR: $\Delta v = \pm 1$, $\Delta J = 0$, ± 1 P-Zweig: $\Delta J = -1$ $\Delta E = h\nu_0 + hB [J(J+1) - J'(J'+1)]$ $= h\nu_0 + hB [J(J-1) - J(J+1)]$ $= h\nu_0 - 2hBJ$

Q-Zweig: $\Delta J = 0$ (verboten in zw.-at. M.) $\Delta E = h\nu_0 + hB[J(J+1) - J'(J'+1)]$ $= h\nu_0$

R-Zweig: $\Delta J = +1$ $\Delta E = h\nu_0 + hB [J(J+1) - J'(J'+1)]$ $= h\nu_0 + hB [(J+1)(J+2) - J(J+1)]$ $= h\nu_0 + 2hB(J+1)$

5

IR Ro-Vibrationsspektroskopie

IR Ro-Vibrationsspektroskopie

Chlorwasserstoff HCl

 $v = 2886 \text{ cm}^{-1}$

 $B_e = 10.593416 \text{ cm}^{-1}$

IR Parallel- und Senkrechtbanden

CH₃CI: ein reales IR-Spektrum

IR, symmetrischer Kreisel: CH₃Cl

IR, asymmetrischer Kreisel: D₂¹³CO

Rotations-Raman-Spektroskopie

Raman:

- reine Rotationsspektren
- Rotationsschwingungsspektren

Polarisierbarkeit muss anisotropisch sein!

D_{∞h} Moleküle (O₂, N₂, CO₂ usw.):

- Aktiv in Raman-Rotationsspektren.
- Keine (IR) MW Spektren.

Sphärische Kreisel [*T*, *T*_d, *T*_h, *O*, *O*_h, *I*, *I*_h] (SiH₄, SF₆, usw.):

- Keine reine Raman-Rotationsspektren
- Keine MW Spektren

Ladung Verteilung in E:

Energieniveaus/Auswahlregeln

Reines Raman-Rotationsspektrum

Reines Raman-Rotationsspektrum

Lineare Kreisel: $E_J = hcBJ(J+1)$

Raman Verschiebung:

Stokes (
$$\Delta J = +2$$
): $\overline{v}_{Rot} = \frac{1}{hc} (E_{J+2} - E_J) = 2B(2J+3)$ $J = 0, 1, 2, ...$
Anti-Stokes ($\Delta J = -2$): $\overline{v}_{Rot} = \frac{1}{hc} (E_J - E_{J-2}) = 2B(2J-1)$ $J = 2, 3, 4, ...$

Raman Wellenzahl:

Stokes (
$$\Delta J = +2$$
): $\overline{v}_{(J \to J+2)} = \overline{v}_{laser} - 2B(2J+3)$ $J = 0, 1, 2, ...$

Anti-Stokes (
$$\Delta J = -2$$
): $v_{(J \to J-2)} = v_{laser} + 2B(2J-1)$ $J = 2, 3, 4, ...$

 $\overline{v}_0 = \overline{v}_{laser} - 6B \qquad \qquad \overline{v}_2 = \overline{v}_{laser} + 6B$ Stokes: $\overline{v}_1 = \overline{v}_{laser} - 10B \qquad \qquad \text{Anti-Stokes:} \qquad \overline{v}_3 = \overline{v}_{laser} + 10B$ $\overline{v}_2 = \overline{v}_{laser} - 14B \qquad \qquad \overline{v}_4 = \overline{v}_{laser} + 14B$

Reines Raman-Rotationsspektrum

Symm. Kreisel: $E_{JK} = BJ(J+1) + (a-B)K^2$ J = 0, 1, 2... K = -J, ..., +J

Auswahlregeln: $\Delta K = 0$ $\Delta J = 0, \pm 1, \pm 2$ (f. K = 0 nur ± 2)

- R-Zweig: $\Delta J = \pm 1$ $\Delta E_{R} = 2B(J + 1) \ J = 1, 2, ...$
- S-Zweig: $\Delta J = \pm 2$ $\Delta E_{s} = 2B(2J + 3) J = 0, 1, 2,...$

Abstand zwischen Linien: 2B (in lin. M. 4B)

Reine Raman-Rotationsspektren: N₂ und O₂

Raman-Rotationsschwingungs-Niveaus

Δ*v* = ±1, Δ*J* = 0, ±1 d.h. P, Q, R (IR: nur P und R f. zw.-at. M.)

Für Raman auch zusätzlich: $\Delta v = \pm 1, \Delta J = 0, \pm 2$ d.h. O, Q, S (Raman: nur diese f. zw.-at. M.)

Raman-Rotationsschwingungsspektren

Zweiatomige Moleküle:

Zweiatomige Moleküle

Ein symmetrischer Kreisel: C₆H₆ v₁₇

Spektren-Analyse

MW: Molekülgröße

Molekülgröße

Iteratives Vorgehen

```
Berechnetes Spektrum
       Vorläufige Zuordnung
Verbessertes berechnetes Spektrum
        Weitere Zuordnung
       ..... (Iterationen).....
      Vollständige Zuordnung
         und Anpassung
Hamiltonian-Parameter Verfeinerung
      (Rotationskonstanten!)
```

Software/Zuordnung

AABS package: Z. Kisiel, L. Pszczolkowski, I.R. Medvedev, M. Winnewisser, F.C. De Lucia, C.E. Herbst, *J. Mol. Spectrosc.* **2005**, *231*, 233

Strukturanalyse

 $r = (I/\mu)^{1/2} = (2.681237 \times 10^{-47} / 1.626832 \times 10^{-27})^{1/2} = (1.648134 \times 10^{-20})^{1/2} = 1.283 \times 10^{-10} \text{ m} = 1.283 \text{ Å}$

 $I = h/(8 * \pi^2 * c * B) = 2.681237 \times 10^{-47} \text{ kg}^2\text{ m}^2$

 $\mu = (m_1 * m_2)/(m_1 + m_2) = 0.9797 \text{ (amu)} * 1.660539 \times 10^{-27} = 1.626832 \times 10^{-27} \text{ kg}$

c = 299792458 m/s

 $h = 6.62607015 \times 10^{-34} \text{ J}^{*}\text{s}$ $\pi = 3.14159$

= 1044.0254 m⁻¹

 ^{1}H m = 1.00794 amu O/L $B = 10.440254 \pm 0.000010 \text{ cm}^{-1}$ Rank et al., J. Opt. Soc. Am., 52 (1962) 1.

Beispiel: HCl

$$B=rac{h}{8\pi^2 c I} \qquad I=\mu r^2$$

³⁵Cl

m = 34.96885 amu

27

Struktur? *r*₀ vs. *r*_e

Für ¹H³⁵Cl

 $B = 10.440254 \text{ cm}^{-1} \rightarrow r = 1.283 \text{ Å}$

aber die beste Rechnungen: $r_e = 1.274 \text{ Å}$ [ae-CCSDTQ/cc-pwCV5Z]

Typen von Molekülstrukturen

 r_0

rs

r_m

- Gleichgewichts-Struktur $r_{\rm e}$
- Effektive Struktur f
 ür v = 0
- Substitutions-Struktur
- Massen-abhängige Struktur
- (+ noch mehr aus Diffraktionsmethoden)

(r₁ für v = 1 usw.)

Effektive Struktur *r*⁰

Least-Squares-Fit:

$$\chi^2 = \Sigma (I_i^{\text{calc}} - I_i^{\text{exp}})^2 \rightarrow \min$$

oder

$$\chi^2 = \Sigma (B_i^{\text{calc}} - B_i^{\text{exp}})^2 \rightarrow \min$$

$$r_0 > r_e$$

$$SO_2$$
 $r(S-O)$ $\alpha(O-S-O)$ $r_e = 1.4308$ Å $119^{\circ}19^{\circ}$ $r_0 = 1.4336$ Å $119^{\circ}25^{\circ}$

Morino et al.

J. Mol. Spectrosc. 1964, 13, 95

FCP
$$r(F-C)$$
 $r(C-P)$ r_e (Å)1.2759(4)1.5445(2) r_0 (Å)1.284561.54097

Bizzocchi, Degli Esposti, Puzzarini *Mol. Phys.* **2006**, *104*, 2627

Schlecht gestelltes inverses Problem

Rotationskonstanten A, B, C

$$B = \frac{\hbar}{4\pi cI_B}$$

Mehr unbekannte Parameter als Daten! (maximal 3 Rotationskonstanten)

Isotopensubstitution

entweder in natürlicher Häufigkeit oder isotopenangereichert

Jedes Isotopomer und jeder Isotopologe gibt ein eigenes Spektrum

Hier (lin. M.): eine Rotationskonstante je Isotopologe; d.h. mindestens zwei nötig,

um 2 Bindungslängen unabhängig zu bestimmen, aber mehr ist besser für Statistik!

N.B.: Isotopomer ≠ Isotopologe

Substitutions-Struktur rs

macht Gebrauch von mehr Daten aus unterschiedlichen Isotopomeren und Isotopologen, um Koordinaten von mehr Atomen verfeinern zu können. Insbesondere sensitiv für die Position des substituierten Atoms.

 $I_{xx} = I_x + \mu(y^2 + z^2)$ $I'_{yy} = I_y + \mu(x^2 + z^2)$ $I'_{zz} = I_z + \mu(x^2 + y^2)$ $I'_{xy} = -\mu xy$ $I'_{xz} = -\mu xz$ $=-\mu yz$ $M\Delta m$

Kraitchman-Gleichungen

C. C. Costain, J. Chem. Phys. 1958, 29, 864

$$z = \frac{\Delta I \cdot M *}{\Delta m \cdot M}$$

- z Koordinate
- Δ*m* Massenänderung bei Substitution
- M Masse des urspr. Moleküls
- M* Masse des subst. Moleküls

Substitutions-Struktur *r*_s

1) Genauigkeit: $r_{\rm e} > r_{\rm s} > r_{\rm 0}$

Näherung: Nullpunkt-Schwingungs-Effekte mitteln sich bei der Benutzung der Kraitchman-Gleichungen aus

2) Alle nicht-äquivalente Atome müssen substituiert werden

Bizzocchi, Degli Esposti, Puzzarini, J. Mol. Spectrosc. 2002, 216, 177

Massen-abhängige-Struktur rm

Erweiterung der Substitutions-Methode:

die Massenabhängigkeit der Schwingungsbeiträge wird bis zur ersten Ordnung mit einbezogen

Probleme: leichte Atome, fehlende Subst.-Möglichkeit (z. B. bei F) *α*, *d*: Konstanten die Schwingung korrigieren

Massen-abhängige-Struktur <i>r</i> m								
Struktu	Ir von OCS	160 12C	32S					
	17	O, ¹⁸ O ¹³ C	³³ S, ³⁴ S					
OCS	r(C–O)	r(C–S)						
r _o	1.15638(113)	1.56488(92)	Watson et al. J. Mol. Spectrosc.					
r _s	1.15842(76)	1.56150(93)	1999 , <i>196</i> , 102					
r _m	1.15764(66)	1.56045(116)	Foord et al. <i>Mol. Phys.</i>					
<i>r_e</i> 1.155386(21)		1.562021(17)	1975 , <i>29</i> , 1685					

Massen-abhängige-Struktur rm

Gleichgewichts-Struktur r_e

Vorgehen (alt):

- 1) Experimentell: r_0 , r_s , r_m , ...
- 2) QM-Rechnungen: $r_{\rm e}$ (daraus Korrekturen für 1)
- 3) Gemischt experimentell/berechnet: $r_{\rm e}$ (empirisch)

Vorgehen (neu):
$$B_e = B_0 + \frac{1}{2} \sum_r \alpha_r^B$$

- 1) Spektren messen, *B*⁰ verfeinern.
- 2) QM-Rechnungen: Rotations-vibrations-konstanten α rechnen.
- 3) Experimentelle B_0 in semi-experimentelle $B_e^{(se)}$ umrechnen.
- 4) Aus $B_{e}^{(se)}$ semi-experimentelle $r_{e}^{(se)}$ verfeinern.

Beispiel: siehe CH₂BrF

Molekül(e) des Tages

Infrared Spectroscopy of Disilicon-Carbide, Si₂C: The ν_3 Fundamental Band

Daniel Witsch,^{*,†}[©] Volker Lutter,[†] Alexander A. Breier,[†] Koichi M. T. Yamada,[‡] Guido W. Fuchs,[†] Jürgen Gauss,[§] and Thomas F. Giesen^{*,†}

Kohlenstoffstern IRC +10216 (CW Leonis): UV

310 Lj

IRC +10216 (CW Leonis) in IR

Si₂C: v₃

Si₂C: Struktur

	semiexperimental	theory	other work a		
A _e [MHz]	62119.6(11)	61 361.1	61 627.30		
$B_{\rm e}$ [MHz]	4435.743(11)	4447.3	4438.01		
$C_{\rm e}$ [MHz]	4137.9225(89)	4146.7	4139.70		
θ [deg]	115.03(10)	114.709	114.871(3)		
r _e [Å]	1.6917(8)	1.69248	1.69272(2)		
$\Delta_{\rm e} \left[\mu {\rm \AA}^2 \right]$	0.06460(42)	0.0037	0.0053		
ζ ₁₃	0.676892(12)	0.655			
523	-0.736082(11)	-0.756			

r(Si–C)

MOGADOC (2021):

Quellen/Literatur

- D. W. H. Rankin, N. W. Mitzel, C. A. Morrison, *Structural Methods in Molecular Inorganic Chemistry*, John Wiley & Sons, Chichester, 2013.
- A. Weber, Ed., Raman Spectroscopy of Gases and Liquids, Springer, Berlin, 1979.
- D. Papoušek, M. R. Aliev, *Molecular Vibrational-Rotational Spectra: Theory and Applications of High Resolution Infrared, Microwave, and Raman Spectroscopy of Polyatomic Molecules*, Elsevier, Amsterdam Oxford New York, 1982.