Strukturaufklärung in der molekularen

anorganischen Chemie

13. Elektronenspinresonanz-

Spektroskopie

Stern-Gerlach-Versuch

Otto Stern (17.02.1888-17.08.1969)

Walther Gerlach (01.08.1889-10.08.1979)

Stern-Gerlach-Versuch

Das Elektron

Eigendrehimpuls $|S| = \hbar(s(s+1))^{1/2}$ (Spinquantenzahl s = $\frac{1}{2}$)

Im äußeren Magnetfeld in z-Richtung: $S_z = m_s \hbar$

 $m_{\rm s}$ - Richtungsquantenzahl für den Elektronenspin: -½ (α), ½ (β)

<u>Klassisch:</u>

Ladung *e*, Masse *m*, Bahndrehimpuls $L \rightarrow$ magnetisches Moment $\mu_L = -e/(2m) \cdot L$ Analogisch für Spinmagnetismus \rightarrow magnetisches Moment $\mu_s = -e/(2m) \cdot S$ (Vgl. El. u. Prot.!)

Quantenmechanisch:

Bohr-Magneton: $\mu_{\rm B} = -\hbar e/(2m_{\rm e}) = 9,27400915(23) \times 10^{-24} [\rm J T^{-1}]$ (elementare Einheit des magnetisches Bahnmoments in einem äußeren Magnetfeld)

 $\mu = g\mu_{\rm B}S/\hbar$, g ist der gyromagnetische Faktor (g-Faktor, Landé-Faktor f. Gesamtdrehimpuls)

 $g_e = 2,00231930437378(2)$ f. Spinmag. (Vgl. für das Proton $g \approx 5,6$ für das Neutron $g \approx -3,8$)

Das Elektron im Magnetfeld

Zeeman-Effekt: $E = m_s g_e \mu_B B_0$ $\Delta E = g_e \mu_B B_0$ $\gamma_e = -g_e \mu_B / \hbar$ (gyromagnetisches Verhältnis f. El.) $\gamma_e = -1,76 \times 10^{11}$ [rad s⁻¹ T⁻¹] $\gamma_p = 2,68 \times 10^8$ [rad s⁻¹ T⁻¹] (für das Proton)

Für das Elektron: 28.025 GHz im Feld von 1 T

(~ 658-mal mehr als für das Proton!)

 $[1 T = 10^4 G = 10 kG; 1 mT = 10 G; 1 G = 0.1 mT]$

EPR: Energiebereich

Ha γ-ray X-ι	ard So ray X-	oft Vacu ray UN	ium Ne V U	ear Vis JV blue	sible N e red	lear l IR	Vid IR	Far IR	Sub mm	o- iw	mm- wave	Mi w	cro- ave	Rac wa	dio- ve	
 < 0.1Å > 10⁹ 1.2×10⁷ 120.000 	5\AA 2×10^7 2.4×10^5 2400	100Å 10 nm 10 ⁶ 1200	2000Å 200 nm 5×10 ⁴ 600	400 nm 2.5×10 ⁴ 300 3	0.7 μm 700 nm 1.4×10 170	n 2.5 μn n 2500 ni) ⁴ 4000 48 0 5	n 25 μr m 400 4.8	n		1 m 10 0.1	m) 2		10 c 0.1 1.2×1	m ا 10 ⁻³	→] / [~ E	/ cm ⁻¹ / kJ mol ⁻ / eV
3×10 ¹⁹	6×10 ¹⁷	3×10 ¹⁶	1.5×10 ¹⁵	7.5×10 ¹⁴	4×10 ¹	4 1.2×10	¹⁴ 1.2×1()13		3×10	0 ¹¹		3×1	0 ⁹	ν	/ Hz
Waveba	and L	. S	С	X	Ρ	KQ) U	V	Ε	w	F	D	_	-	J	—

wavepanu	E.	3	C	^	F	ĸ	Y	U	v	E	vv	F	U	_	J	—
λ/mm	300	100	75	30	20	12.5	8.5	6	4.6	4	3.2	2.7	2.1	1.6	1.1	0.83
$ u/{ m GHz}$	1	3	4	10	15	24	35	50	65	75	95	111	140	190	285	360
$B_0/{ m T}$	0.03	0.11	0.14	0.33	0.54	0.86	1.25	1.8	2.3	2.7	3.5	3.9	4.9	6.8	10.2	12.8

Relaxation

EPR Relaxationzeiten sind um den Faktor ~658² kürzer im Vergleich zu NMR.

Spin-Gitter Relaxation T_1

Spin-Spin Relaxation T_2

EPR Relaxationzeiten sind im Bereich von μ s (10⁻⁶ s) Typischerweise: $T_1 \gg T_2$

EPR

Wechselwirkung mit Strahlung:

- (Optische/Radio) Spektroskopie
- Streuung/Diffraktion
- <u>Resonanzmethode</u>
- Elektrische Methode
- Ionisation

Probe Beeinflussung:

- Destruktiv
- <u>Nicht destruktiv</u>

Anwendung:

- Identifizierung/Sauberkeit
- Elementaranalyse
- Chemische Gruppen
- Chemische Konnektivität
- Konformations-Eigenschaften
- Symmetrie
- Geometrie (Längen, Winkel)
- Schwingungen
- Elektronische Struktur (/Dichte)
- (Elektrische) Dipolmomente

Charakteristische Zeit:

- Langsame Methode
- Mittelschnelle Methode
- Schnelle Methode

Aggregatzustand der Probe:

- <u>Gas</u>
- <u>Flüssigkeit</u>
- <u>Feststoff</u>

Prinzipieller Aufbau

X-Band-EPR-Spektrometer mit 100 kHz Feldmodulation

CW EPR

Differentielle Abtastung:

 $B_0 = B_{\text{Anfang}} + \text{const.} \cdot t + B_{\text{Modulation}} \cdot \sin(2\pi v_{\text{Modulation}} \cdot t)$

Bruker E500 X-Band CW EPR Spektrometer (@ North Carolina State University)

11

g-Faktor

Das freie Elektron: g = 2,0023

CH₃ Radikal: g = 2,0025

5,5'-(CF₃)₂-2,2'-bipyridin Radikal-Anion: *g* = 2,0035

Cu²⁺-Chloride (*L*-S-Kopplung!):

Compound	g_{av}
$\begin{array}{l} (BzlEt_{3}N)_{2}[CuCl_{4}] \ (1) \\ (Me_{3}PhN)_{2}[CuCl_{4}] \ (2) \\ (EtPh_{3}P)_{2}[CuCl_{4}] \ (3) \\ (BzlPh_{3}P)_{2}[CuCl_{4}] \cdot 2CH_{2}Cl_{2} \ (4) \\ (Ph_{4}As)_{2}[CuCl_{4}] \ (5) \end{array}$	$\begin{array}{l} 2.212\pm0.005\\ 2.170\pm0.005\\ 2.179\pm0.005\\ 2.189\pm0.005\\ 2.206\pm0.005\end{array}$

Cu⁰: [Ar] 3d¹⁰ 4s¹

Größenordnung einiger Energien

Orbitalenergie		> 10 ⁴ cm ⁻¹
Energieaufspaltung im Ligandenfeld		10 ² - 10 ⁴ cm ⁻¹
Spin-Bahn-Kopplung für die Atome	B: 10, C: 28, F: 271, CI: 4	40, Br: 1842 cm ⁻¹
Elektronen-Zeeman-Übergänge im X bzw. Q-Ba	nd-Spektrometer:	0,3 bzw. 1 cm ⁻¹
Spin-Spin-Kopplung (Nullfeldaufspaltung) für Trip	olett-Grundzustand-Molek.:	1 cm ⁻¹
Elektronenspin-Kernspin-Kopplung (HFS)		< 10 ⁻¹ cm ⁻¹
Zeeman-Übergänge von H-Kernspins im Feld B_0	0 = 0,7 T:	10 ⁻³ cm ⁻¹

Elektronenspin-Kernspin-Kopplung

a – Hyperfein-Kopplungskonstante (HFC im Engl.)

Elektronenspin-Kernspin-Kopplung

Vergleich mit NMR

EPR: Hyperfein-Wechselwirkung (ein Elektron – Kerne)

NMR: Kern-Kern-Wechselwirkungen

${}^{12}C^{1}H_{3}$ Radikal

CH₃ Geometrie

CH3⁻ Radikal, D_{3h}

Hirota (1982) High-Res IR: r_0 (C-H) = 1.079009(27) Å r_e (C-H) = 1.0767 Å

 CH_3^+ Kation, D_{3h}

Crofton (1988) High-Res IR: $r_0(C-H) = 1.095(4) \text{ Å}$ $r_e(C-H) = 1.087 \text{ Å}$

 CH_3^- Anion, C_{3v}

Theorie, ae-CCSD(T)/cc-pwCVQZ $r_{e}(C-H) = 1.111 \text{ Å}$ $\alpha(H-C-H) = 104.0 \text{ °}$

 CH_4 neutral Singlet, T_d

Stanton (1999) MW, High-Res IR: $r_{e}(C-H) = 1.0869(3) \text{ Å}$

Hyperfein-Aufspaltung

Ein Radikal bestehend aus einem Kern mit I = 1 und zwei äquivalenten Kernen mit I = 1/2

Im Allgemeinen,

Anzahl von EPR Signale:

$$n_{\rm EPR} = \prod_i (2k_i I_i + 1)$$

 k_i – Anzahl von äquivalenten Kernen mit $I = I_i$ in der Gruppe *i*

Hyperfein-Aufspaltung

Ein Radikal bestehend aus zwei äquivalenten Kernen mit *I* = 1

$$n_{\rm EPR} = \prod_i (2k_iI_i + 1)$$
$$n = 2 \cdot 2 \cdot 1 + 1 = 5$$

Phenyl-Radikal

Benzol Radikal-Anion

VO(acac)₂

Oktett wegen ⁵¹V (100 %), *I* = 7/2

Spindichte:

5,5'-(CF₃)₂-2,2'-bipyridin Radikal-Anion

5,5'-(CF₃)₂-2,2'-bipyridin Radikal-Anion

Spindichte:

Coupling constant/G	Experimental	Assignment
$a (2 \times {}^{14}\text{N})$	1.61	ring ¹⁴ N
$a (3 \times {}^{19}\text{F})$	13.19	CF3 ¹⁹ F
$a (4 \times {}^{1}\mathrm{H})$	1.61	4,4' ¹ H
		3,3' ¹ H
$a (2 \times {}^{1}\mathrm{H})$	0.52	6,6' ¹ H
$g_{\rm iso}$	2.0035	

Geometrie-Abhängigkeit

Geometrie-Abhängigkeit: Ar(R)Ge-H

DFT-predicated hyperfine values

Ge geometry	out-of- plane angle (<i>θ</i>)	A ⁷³ Ge, MHz	A ¹ H _{hydride} , MHz
pyramidal	22 °	[-214, -216, -306],	[+101, +108, +112],
model		a _{iso} = -245	a _{iso} = +107
planar	0°	[-46, -162, -49],	[-40, -43, -58],
model		a _{iso} = -85.6	a _{iso} = -47
exp.	≈ 0°	[-10, -90, -10], a _{iso} = -36.6	[-23.0, -20.5, -31.5], a _{iso} = -25.0

L. Tao, T. Y. Lai, P. P. Power, R. D. Britt, Inorg. Chem. 2019, 58, 15034–15038.

 $[C_5H_5]^+, [C_5H_5]^+$

nature chemistry

Article

https://doi.org/10.1038/s41557-023-01417-5

Structural characterization and reactivity of a room-temperature-stable, antiaromatic cyclopentadienyl cation salt

Received: 17 March 2023

Accepted: 7 December 2023

Yannick Schulte ¹, Christoph Wölper¹, Susanne M. Rupf ², Moritz Malischewski ², Daniel J. SantaLucia ³, Frank Neese³, Gebhard Haberhauer ⁴ K & Stephan Schulz ¹⁵ K

Published online: 15 January 2024

 $[C_5H_5]^{-1}$

g = 2.033

 $[C_5H_5]^+$

 $[C_5H_5]^+$

Harmonic oscillator model of aromaticity (HOMA)

$$HOMA = 1 - \frac{\alpha}{n} \sum_{i}^{n} \left(R_{opt} - R_{i} \right)^{2}$$

a – empirische Konstante 257.7 Å⁻² R_{opt} – optimal r(C-C) = 1.388 Å

HOMA = 1 für aromatische Systeme HOMA = 0 für nichtaromatische Systeme HOMA < 0 für antiaromatische Systeme

HOMA = -0.39

(Es gibt jedoch noch eine weitere Kristallmodifikation mit HOMA=0.01) (Theor. HOMA für Triplet ist 0.49)

Modellierung / Verfeinerung

EasySpin Software

32

Beispiel: Naphthalin Anion-Radikal

Beispiel: Naphthalin Anion-Radikal

Modell: g = 2.0, $a_1 = -0.495$ mT, $a_2 = -0.183$ mT

Experiment

Weitere Themen

In EPR sind auch sehr wichtig:

- Anisotropie
- e-Spin-Spin-Kopplung (Nullfeldaufspaltung)
- Multiresonanz-Methoden

Molekül des Tages: [Xe₂]⁺

The Dixenon(1+) Cation: Formation in the Condensed Phases and Characterization by ESR, UV-Visible, and Raman Spectroscopy[†]

Dean R. Brown,^{1a} Martin J. Clegg,^{1a} Anthony J. Downs,^{*,1a} Richard C. Fowler,^{1a} Alan R. Minihan,^{1a} James R. Norris,^{1b} and Lawrence Stein^{1b}

Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, U.K., and Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

 $[XeF]^{+}[Sb_{2}F_{11}]^{-} + H2O \rightarrow grünes Produkt$

D. R. Brown, M. J. Clegg, A. J. Downs, R. C. Fowler, A. R. Minihan, J. R. Norris, L. Stein, *Inorg. Chem.* 1992, 31, 5041–5052.

L. Stein, J. R. Norris, A. J. Downs, A. R. Minihan, J. Chem. Soc., Chem. Commun. 1978, 502–504.

[Xe₂]⁺: EPR

[Xe₂]⁺: EPR

Experiment Experiment **Naturelles** 200 G 200 G Gemisch Modell Xe₂⁺ Modell Xe₂⁺ von Xe Modell Xe₃⁺ Modell Xe₃⁺

Angereichertes 129 Xe (I = 1/2) wird in Reaktion verwendet

[Xe₂]⁺: EPR

Angereichertes 129 Xe (I = 1/2) wird in Reaktion verwendet

IsotopomerNatural abundanceEPR multiplicity
$$(g_{\perp})$$
*Xe*Xe27.5%singlet^{129}Xe*Xe27.7%doublet^{131}Xe*Xe22.2%quartet^{129}Xe^{129}Xe7.0%triplet^{131}Xe^{131}Xe4.5%septet^{129}Xe^{131}Xe11.2%doublet of quartets

*Xe represents all isotopes of xenon with I = 0.

[Xe₂]⁺: UV-Vis

Lösung von $[XeF]^{+}[Sb_{2}F_{11}]^{-}$ in SbF₅ + Xe Gas

Neue Banden bei λ = 335 und 715 nm herrühren von gleicher Quelle.

[Xe₂]⁺[Sb₄F₂₁]⁻: XRD

Entwicklung der Geschichte: [Xe₄]⁺

DOI: 10.1002/anie.200701688

The Blue Xe₄⁺ Cation: Experimental Detection and Theoretical Characterization**

Stefan Seidel, Konrad Seppelt,* Christoph van Wüllen,* and Xiao Ying Sun

Figure 3. Structure of the Xe_4^+ ion $(D_{\infty h})$ according to our calculations (bond lengths in pm).

S. Seidel, K. Seppelt, C. van Wüllen, X. Y. Sun, *Angew. Chem. Int. Ed.* 2007, 46, 6717–6720.

 $[Xe_4]^+$

Quellen / Literatur

- D. W. H. Rankin, N. W. Mitzel, C. A. Morrison, Structural Methods in Molecular Inorganic Chemistry, John Wiley & Sons, Chichester, 2013.
- G. Jeschke, Physical Chemistry IV, Part 2: Electron Paramagnetic Resonance, ETH, 2016
- https://www.easyspin.org
- Spectral Database for Organic Compounds SDBS: http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng
- Atherton N.M.: Principles of Electron Spin Resonance, Ellis Horwood Ltd., Chichester, 1993
- Weil J.A, Wertz J.E. and Bolton J.R.: Electron Spin Resonance, Chapman and Hall, London, 1994