Strukturaufklärung in der molekularen

anorganischen Chemie

10. Röntgen- und

Neutronendiffraktometrie

Themen

- Röntgenbeugung am Einkristall
- Pulverdiffraktion
- Neutronendiffraktion
- Diffraktion an Flüssigkeiten
- Molekül(e) des Tages

Röntgen- und Neutronenbeugung

γ-ray	Ha X-r	ird 'ay	So X-	oft Vac ray U	uum N	ear JV t	Visible blue re	Ne d I	ear R	Mid IR	Fa IF	ar R	Sub- mmw	mm- wave	Micro- wave	Radio wave	-
← < 0.	1Å	5Å		100Å 10 nm	2000Å 200 nm	400 r	0. nm 70	7 μm 0 nm	2.5 µ 2500	lm nm	25 µm		1 r	nm	10 c	m →	} λ
> 1	0 ⁹	2×1	07	10 ⁶	5×104	2.5×1	104 1.4	4×104	400	0	400		1	0	0.1	_	ν̃ / cm⁻¹
1.2×	10 ⁷	2.4×	10 ⁵	1200	600	300)	170	48		4.8		0.	12	1.2 ×1	10-3 -	E / kJ mol ⁻¹
120	000	240	0	120	6	3		1.7	0.5	5	0.05		0.0	01	0.000	01	[<i>E</i> /eV
3×1	0 ¹⁹	6×1	17	3×10 ¹⁶	1.5×101	⁵ 7.5×1	014 4>	<1014	1.2×1	014 1	.2×10 ¹³	ļ	3×1	011	3×10	0 ⁹	ν/ Hz

λ ~ **0.5** – **2.5** Å (XRD); ~ **0.5** – **5.0** Å (ND)

XRD, ND

Wechselwirkung mit Strahlung:

- (Optische/Radio) Spektroskopie
- Streuung/Diffraktion
- Resonanzmethode
- Elektrische Methode
- Ionisation

Probe Beeinflussung:

- Destruktiv
- <u>Nicht destruktiv</u>

Anwendung:

- Identifizierung/Sauberkeit
- Elementaranalyse
- Chemische Gruppen
- Chemische Konnektivität
- Konformations-Eigenschaften
- <u>Symmetrie</u>
- Geometrie (Längen, Winkel)
- Schwingungen
- Elektronische Struktur (/Dichte)
- (Elektrische) Dipolmomente

Charakteristische Zeit:

- Langsame Methode
- Mittelschnelle Methode
- Schnelle Methode

Aggregatzustand der Probe:

- <u>Gas</u>
- Flüssigkeit
- <u>Feststoff</u>

Beugung: die Bragg'sche Gleichung

Beugung: die Bragg'sche Gleichung

Laufunterschied: 2δ

Für konstruktive Interferenz: $\lambda = 2\delta = 2d \sin(\theta)$

$$n\lambda = 2d \sin(\theta)$$

 $sin(\theta) \leq 1 \rightarrow \lambda \leq 2d/n$

XRD Beugungsbild

Schwarze Punkte: Reflexe (Beugung am Einkristall wegen passender Bedingungen λ , d, θ)

Diffuser Hintergrund: Beugung an amorphen Phasen, inelastische Beugung, ungleichmäßige Absorption

Weiße Figur: Schatten vom Beamstop

Vom Doppelspalt zum Gitter

Aufbau von Kristallen: die Einheitszelle

Einfache Symmetrielemente

Herrmann-Mauguin-Nomenklatur (Schöfließ-N. in Klammern)

Fünf- und siebenzählige Achsen

(s. Parkettierung von euklidischen Ebenen in Mat.)

Aber möglich in Quasikristallen! (Dan Shechtman, Chemie-Nobelpreis, 2011)

Kombinierte Symmetrielemente

Kombinierte Symmetrielemente

Schraubenachse

Kombination aus *n*-facher Rotation mit Translationselement

Nomenklatur *n_m m* Translation entlang einer Achse um *m/n*

← Beispiel
 3₁: nächstes Objekt
 gedreht um 120°
 translatiert um ⅓ des Gittervektors

Mögliche Schraubenachsen: $2_1, 3_1, 4_1, 4_2, 6_1, 6_2, 6_3$.

Kombinierte Symmetrielemente

Gleitspiegelebene

Kombination aus Spiegelung *m* mit Translationselement

Nomenklatur *a, b, c Spiegelung und Translation um* ½ des Gittervektors

Bei Wiederholung: Resultat nur Translation

n : Gleiten entlang der Flächendiagonale
d : ¹/₄ ... der Flächendiagonale
e : ¹/₂ ... der Flächendiagonale

Beispiel: a

7 Kristallsysteme

Kristallsystem	Achsen- und	Minimale	Laue Gruppe	Bravais-	Kristallographische	Übliche
	Winkel-	Symme-	(Symmetrie	Gitter	Punktgruppen	Raum-
	Dimensionen	trie	des Beu-			gruppen
			gungsbilds)			
Triklin	a≠b≠c	-	ī	Р	1, 1	ΡĪ
	$\alpha \neq \beta \neq \gamma$				(<i>C</i> ₁ , <i>C</i> _i)	
Monoklin	a≠b≠c	2 <i>b</i> oder	2/m	Р, С	2, m, 2/m	P2 ₁ , C2/c,
	α = γ = 90°, $\beta \neq$ 90°	m⊥b			(C_2, C_s, C_{2h})	P2 ₁ /c
Ortho-	a≠b≠c	2,2,2 oder	mmm	P, C, I, F	222, mm2, mmm	<i>P</i> 2 ₁ 2 ₁ 2 ₁ ,
rhombisch	$\alpha = \beta = \gamma = 90^{\circ}$	mmm			(D ₂ , C _{2v} , D _{2h})	Pbca
Tetragonal	$a = b \neq c$	4 c	4/mmm	P, I	4, 4, 4/m, 422, 4mm,	I4/mmm
	α = β = γ = 90°				42 <i>m,</i> 4/ <i>mmm</i>	
					(C ₄ , S ₄ , C _{4h} , D ₄ , C _{4v} , D _{2d} ,	
					D _{4h})	
Trigonal	a = b = c	3 c	3 ^m	P, I, F	3, 3, 32, 3 <i>m</i> , 3m	R3m
	$\alpha = \beta = \gamma \neq 90^{\circ}$				(C ₃ , S ₆ , D ₃ , C _{3v} , D _{3d})	
Hexagonal	$a = b \neq c$	6 c	6/mmm	R	6, ē, 6/m, 622, 6mm,	Pm3m,
	α = β = 90°, γ = 120°					Fm3m,
					(C ₆ , C _{3h} , C _{6h} , D ₆ , C _{6v} , D _{3h} ,	Fd3m
					D _{6h})	
Kubisch	a = b = c	3 [111]	m3m	P	23, <i>m</i> 3, 432,	P6 ₃ /mmc
	α = β = γ = 90°				43 <i>m, m</i> 3m	
					(<i>T</i> , <i>T</i> _h , <i>O</i> , <i>T</i> _d , <i>O</i> _h)	

Kristalle und Kristallsysteme

trikliner Rhodonit Mn²⁺SiO₃

monokliner Vivianit $Fe^{2+}{}_{3}[PO_{4}]_{2} \cdot 8H_{2}O$

orthorhombischer Fayalit Fe₂²⁺[SiO₄]

tetragonaler Anatas TiO₂

hexagonaler Beryll Al₂Be₃[Si₆O₁₈]

Quelle: https://de.wikipedia.org/wiki/Kristallsystem

kubischer Spessartin Mn₃Al₂[SiO₄]₃

Wahl der Einheitszelle

Hypothetische Beispiele in 2 Dimensionen

Die am besten geeignete primitive Zelle (A) Hier wird eine zentrierte Zelle (D) Bevorzugt, da sie die Symmetrie am besten widergibt

Die 14 Bravais-Gitter

triklin

monoklin

tetragonal

orthorhombisch

hexagonal

7 Kristallsysteme

14 Bravais-Gitter

kubisch

- P primitiv
- C basiszentriert
- I raumzentriert
- F flächenzentriert

trigonal

R/P

Bravais-Gitter

Halit (NaCl)

Rhomboeder (blau): kleinstmögliche Zelle

Elementarzelle (schwarz): kubisch F

Kristallsystem: kubisch Raumgruppe: $Fm\overline{3}m$

Symmetrie: Zusammenfassung

Pnma eine Abkürzung für $P \frac{2_1}{n} \frac{2_1}{m} \frac{2_1}{a}$

Bedeutet:

- Einheitszelle ist primitive Zelle P (ohne Zentrierung)
- 2_1 Schraubenachsen entlang aller drei Vektoren **a**, **b** und **c**
- Diagonale Gleitspiegelebene n senkrecht zu a mit Gleitrichtung entlang des Vektors (b+c)
- Spiegelebene senkrecht zu **b**
- Gleitspiegelebene senkrecht zu *c* mit Translationskomponente entlang *a*.

Selbst hier nicht alle Symmetrielelemte gezeigt Vollständig: International Tables for Crystallography, Vol. A

Pnma

	Symmetry Operators
1	<i>x</i> , <i>y</i> , <i>z</i>
2	$\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z$
3	$x, \frac{1}{2} - y, z$
4	$\frac{1}{2} + x, y, \frac{1}{2} - z$
5	$\overline{x}, \overline{y}, \overline{z}$
6	$\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z$
7	$\overline{x}, \frac{1}{2} + y, \overline{z}$
8	$\frac{1}{2} - x, \overline{y}, \frac{1}{2} + z$

1	
п	$(\frac{1}{4}, y, z) [0, \frac{1}{2}, \frac{1}{2}]$
т	$(x, \frac{1}{4}, z)$
а	$(x, y, \frac{1}{4}) \left[\frac{1}{2}, 0, 0\right]$
$\overline{1}$	(0, 0, 0)
2_1	$(x, \frac{1}{4}, \frac{1}{4})[\frac{1}{2}, 0, 0]$
2_1	$(0, y, 0) [0, \frac{1}{2}, 0]$
21	$(\frac{1}{4}, 0, z) [0, 0, \frac{1}{2}]$

No. 62 Reflection Conditions (general) 0kl: k + l = 2nhk0: h = 2nh00: h = 2n0k0: k = 2n

 $00l:\ l=2n$

International Tables

Asymmetrische Einheit (Blick entlang a)

Anwendung eines Symmetrieelementes

Anwendung der Translation

Weitere Symmetrieoperationen

Vervollständigung

Durchführung eines Experimentes

Rigaku Supernova Diffractometer @ Uni-Bielefeld (AK Mitzel)

Rigaku Supernova Diffractometer @ Uni-Bielefeld (AK Mitzel)

Micro-Fokus Röntgenstrahlung Quelle

Anode:	Cr	Fe	Со	Cu	Мо	Ag
Kα (Å):	2.29	1.94	1.79	1.54	0.71	0.56

Goniometer Kopf

Kristallzucht

Kristall-Montage

Goniometer-Kopf

Kristall-Montage

Indizierung, Netzebenen in 2D

(11) Ebenen

(12) Ebenen

Miller'sche Indizes für Netzebenen

Beispiel:

h = 3, *k* = 4, *l* = 2 Ebene (3 4 2)

Miller'sche Indizes für Netzebenen: Graphit

Indizierung

Indizierung

Ein Beispiel – Daten-File Ti(ONMe₂)₄

k	ι	INT	ESD	0
0	5	0.19	0.21	0
0	6	1482.37	7.42	0
0	7	-0.27	0.27	0
0	8	301.38	3.12	0
0	9	0.21	0.31	0
0	10	101.36	2.01	Θ
0	11	0.20	0.40	0
0	12	128.75	2.66	0
0	13	0.51	0.43	0
1	13	57.66	1.97	0
1	12	16.73	0.99	Θ
1	11	14.55	0.88	Θ
1	10	11.79	0.77	Θ
1	9	238.71	3.07	0
1	8	11.96	0.67	Θ
1	7	1077.47	6.45	0
1	6	0.73	0.26	0
1	5	134.87	1.61	0
1	4	1.97	0.26	0
1	3	3.41	0.42	0
1	2	221.00	1.53	0
	k 000000001111111111111111	k l 0 5 0 6 0 7 0 8 0 9 0 10 0 12 0 13 1 13 1 12 1 13 1 12 1 13 1 13 1 10 1 9 1 8 1 7 1 6 1 3 1 2	k I INT 0 5 0.19 0 6 1482.37 0 7 -0.27 0 8 301.38 0 9 0.21 0 10 101.36 0 11 0.20 0 12 128.75 0 13 0.51 1 13 57.66 1 12 16.73 1 14.55 1 1 13 57.466 1 12 16.73 1 14 14.55 1 10 11.79 1 9 238.71 1 8 11.96 1 7 1077.47 1 6 0.73 1 5 134.87 1 4 1.97 1 3 3.41 1 2 221.00	klINTESD0 5 0.19 0.21 0 6 1482.37 7.42 0 7 -0.27 0.27 0 8 301.38 3.12 0 9 0.21 0.31 0 10 101.36 2.01 0 11 0.20 0.40 0 12 128.75 2.66 0 13 0.51 0.43 1 13 57.66 1.97 1 12 16.73 0.99 1 11 14.55 0.88 1 10 11.79 0.77 1 9 238.71 3.07 1 8 11.96 0.67 1 7 1077.47 6.45 1 6 0.73 0.26 1 5 134.87 1.61 1 4 1.97 0.26 1 3 3.41 0.42 1 2 221.00 1.53

...

...

Ein Beispiel – Input-File Ti(ONMe₂)₄

TITL TiONMe24 CELL 0.71073 9.4828 9.618 7.8488 90 90 90 ZERR 2 0.0013 0.001 0.0015 0 0 0 LATT -1 SYMM -X, -Y, +ZSYMM 0.5+X,0.5-Y,-Z SYMM 0.5-X,0.5+Y,-Z SFAC C H N O Ti UNIT 16 48 8 8 2 L.S. 4 PLAN 20 SIZE 0.93 0.52 0.36 **TEMP** -123 FMAP 2 WGHT 0.1 FVAR 0.9 HKLF 4 1 0 1 0 0 0 1 1 0 0

Streuamplituden im Komplexen

Strukturfaktor $F \sim$ Intensität Phase des Strukturfaktors F

$$|F_{hkl}| = \sqrt{A^2 + B^2} \qquad \Phi_{hkl} = \tan^{-1}(B_A)$$

$$A_{hkl} = \sum_{i} f_i \cos[2\pi(hx_i + ky_i + lz_i)] \cdot e^{-\frac{8\pi^2 U_i \sin 2\theta}{\lambda^2}}$$
$$B_{hkl} = \sum_{i} f_i \sin[2\pi(hx_i + ky_i + lz_i)] \cdot e^{-\frac{8\pi^2 U_i \sin 2\theta}{\lambda^2}}$$

Strukturfaktor – Zusammenhang mit Elektronendichte $\rho(r)$

$$F_{\mathbf{h}} = \int \rho(\mathbf{r}) e^{2\pi i \mathbf{h} \mathbf{r}} dV$$
 h: Vektor aus h, k, l

Ein Beispiel – Struktur Ti(ONMe₂)₄

X-Ray crystallography

Crystals were transferred and examined under inert perfluoropolyether oil (RS3000) and mounted on glass fibres. Data were collected on a Stoe Stadi-4 four-circle diffractometer fitted with an Oxford Cryosystems low-temperature device¹¹ and graphite-monochromated Mo-K α X-radiation($\lambda = 0.71073$ Å). The structures were solved for all non-H atoms by direct methods,^{12,13} and refined against F^2 with full-matrix leastsquares analysis.¹⁴ The non-H atoms were refined with anisotropic thermal displacement parameters. The hydrogen atoms on the methyl groups were located in a difference synthesis and freely refined with isotropic thermal displacement parameters.

Ti(ONMe₂)₄ 1. $C_8H_{24}N_4O_4Ti$, M = 288.21, orthorhombic, space group $P2_12_12$, a = 9.4828(13), b = 9.618(1), c = 7.849(2) Å, U = 715.9(2) Å³, Z = 2, $D_c = 1.337$ g cm⁻³, F(000) = 308. Colourless cuboid, $0.93 \times 0.52 \times 0.36$ mm. T = 150(2) K, 2076 reflections collected (ω -2 θ scans, $-13 \le h \le 13$, $0 \le k \le 13$, $-6 \le l \le 11$), 1225 independent ($R_{int} = 0.0362$). Semiempirical absorption correction by ψ scans (maximum, minimum transmission factors = 0.730, 0.612). The refinement converged with a conventional R value of 0.0184 [based on F and 1188 data with $I \ge 2\sigma(I)$] and a wR2 value of 0.0532 (based on F^2 and all 1225 data for 127 refined parameters). In the final difference synthesis the maximum and minimum residual electron densities were 0.22 and $-0.24 \text{ e} \text{ Å}^{-3}$, respectively. Weighting scheme employed: $w = [\sigma^2(F_o^2) + 0.0234P^2 + 0.0802P]^{-1}$, where $P = 0.333 33(F_o^2 + 2F_c^2)$.

	$Ti(ONMe_2)_4$
M-O(1)	1.918(1)
M-O(2)	1.976(1)
M-N(1)	2.230(1)
M-N(2)	2.095(1)
O(1)-N(1)	1.432(1)
N(1)-C(1)	1.465(2)
N(1)-C(2)	1.468(2)
O(2)–N(2)	1.424(1)
N(2)-C(4)	1.461(2)
N(2)-C(3)	1.469(2)

$$wR2 = \sqrt{\frac{\sum_{hkl} \left[w \left(\left| \vec{F}_{hkl}^{\text{beob}} \right|^2 - \left| \vec{F}_{hkl}^{\text{calc}} \right|^2 \right)^2 \right]}{\sum_{hkl} \left[w \left(\left| \vec{F}_{hkl}^{\text{beob}} \right|^2 \right)^2 \right]}}$$
$$R1 = \frac{\sum_{hkl} \left| \left| \vec{F}_{hkl}^{\text{beob}} \right| - \left| \vec{F}_{hkl}^{\text{calc}} \right| \right|}{\sum_{hkl} \left| \vec{F}_{hkl}^{\text{beob}} \right|}$$

N. W. Mitzel, S. Parsons, A. J. Blake, D. W. H. Rankin, J. Chem. Soc., Dalton Trans. 1996, 2089–2093.

Verzwillingung

Verzwillingung – Beugungspattern

C C 0 0 C П Ø В Ø DQ a °Б Q 000 卤 D

Fehlordnung

aminomethylgallium halide $[Me_2NCH_2GaX_2]_2 (X = Cl, I)_{48}$

Hilfe aus Rechnungen

"Twinned crystal: component 2 rotated by 6.9842 around [0.34 -0.93 -0.16] (reciprocal) or [0.18 -0.98 -0.01] (direct). Disorder of P1, Si1, O1, O2, F1 to F5, F11 to F15, C1, C2, C5, and C6 over two sites (45:55)."

PBE0-D3BJ/def2-TZVPP PBE-D3BJ/DZVP-MOLOPT-SR-GTH (PW+Gauss)₄₉

A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, A. Dress, Angew. Chem. Int. Ed. 2002, 41, 1162.

Pulverdiffraktion

Pulverdiffraktion

Beispiel:

ZnO Elektronen-Beugung $\lambda = 0.04055 \text{ Å}$ L = 598 mm

P6₃mc

a = 3.2495 Å c = 5.2069 Å

С

 $\gamma = 120^{\circ}$

Pulverdiffraktion: Zinkoxid

Neutronendiffraktion

Irregular variation of neutron scattering amplitude with atomic weight due to superposition of 'resonance scattering' on the slowly increasing 'potential scattering'; for comparison the regular increase for X-rays is shown. (From *Research* (London) 7, 257 (1954).)

Neutronendiffraktion

Neutronendiffraktion: Detektor

[Rutherford Appleton Laboratory (UK) $6^{\circ} \le 2\theta \le 168^{\circ}$]

ND, ein Beispiel: Y₄H₈(Cp')₄(THF)

M. Yousufuddin, M. J. Gutmann, J. Baldamus, O. Tardif, Z. Hou, S. A. Mason, G. J. McIntyre, R. Bau, *J. Am. Chem. Soc.* 2008, 130, 3888–3891.

ND, ein Beispiel: Y₄H₈(Cp')₄(THF)

Key Distances and Angles in the Y_4H_8 Cores (the ILL Data Represent Results from the VIVALDI Instrument, whereas the ISIS Data Represent Results from the SXD Instrument)

	ILL results	ISIS results
	Y-Y Distances	
Y(1) - Y(2)	3.670(6)	3.685(4)
Y(1) - Y(3)	3.702(5)	3.699(4)
Y(1) - Y(4)	3.683(5)	3.695(3)
avg	3.685	3.693
Y(2) - Y(3)	3.430(4)	3.429(4)
Y(2) - Y(4)	3.492(4)	3.510(4)
Y(3) - Y(4)	3.432(4)	3.438(4)
avg	3.451	3.459
	Y-(central H) Distances	
Y(1) - H(1)	2.163(10)	2.179(6)
Y(2) - H(1)	2.189(9)	2.187(7)
Y(3) - H(1)	2.229(8)	2.222(6)
Y(4) - H(1)	2.195(7)	2.198(6)
avg	2.193	2.197
	Y-(face-bridging H) Distances	
Y(2) - H(2)	2.342(8)	2.344(6)
Y(3) - H(2)	2.368(9)	2.348(7)
Y(4) - H(2)	2.329(9)	2.339(8)
avg	2.346	2.344
	Y-(edge-bridging H) Distances	
Y(2) - H(3)	2.216(8)	2.203(7)
Y(4) - H(3)	2.196(8)	2.202(7)
Y(3) - H(4)	2.133(8)	2.142(7)
Y(4) - H(4)	2.139(8)	2.123(7)
Y(2) - H(5)	2.127(8)	2.135(8)
Y(3) - H(5)	2.149(8)	2.127(8)
Y(1) - H(6)	2.203(8)	2.189(7)
Y(3) - H(6)	2.138(10)	2.132(7)
Y(1) - H(7)	2.182(9)	2.184(8)
Y(2) - H(7)	2.165(11)	2.184(7)
Y(1) - H(8)	2.197(8)	2.203(8)
Y(4) - H(8)	2.191(11)	2.171(9)
avg	2.170	2.166
H(1)····H(2)	2.175(14)	2.153(9)

M. Yousufuddin, M. J. Gutmann, J. Baldamus, O. Tardif, Z. Hou, S. A. Mason, G. J. McIntyre, R. Bau, *J. Am. Chem. Soc.* 2008, 130, 3888–3891.

Beugung an Flüssigkeiten

Z.B. Röntgenbeugung am flüssigen Quecksilber bei T = 173 - 473 K

L. Bosio, R. Cortes, C. Segaud, J. Chem. Phys. 1979, 71, 3595.

Beugung am flüssigen Quecksilber

L. Bosio, R. Cortes, C. Segaud, J. Chem. Phys. 1979, 71, 3595.

FIG. 6. Comparison between the radial distribution functions r[g(r) - 1] observed at 173 K (full line) and those computed from the relaxed structures of α -Hg and β -Hg phases (open circles). In the inset, we have drawn the function relating the variance σ_i^2 to the distance r_i .

Ergebniss: fl. Hg ist näher zu α -Hg

Molekül(e) des Tages

Long Carbon–Carbon Bonding beyond 2 Å in Tris(9-fluorenylidene)methane

Takashi Kubo,* Yuki Suga, Daisuke Hashizume,* Hiroki Suzuki, Tatsuya Miyamoto, Hiroshi Okamoto, Ryohei Kishi, and Masayoshi Nakano

J. Am. Chem. Soc. 2021, 143, 14360–14366

Lange C–C Bindungen

Elektronen-Dichte-Analyse

(a) Chemical structure of 1. (b) An ORTEP drawing of 1 at 90 K. Thermal ellipsoids are drawn at the 50% probability level. (c) Static model deformation density maps on the C1–C2–C3 plane, and (d) cross-sectional view of the C1–C2–C3 plane along the line connecting C1 and the midpoint between the C2 and C3 atoms. The concentration of electron density between C2 and C3 is marked by a green circle. The blue lines represent positive contours from 0.01 to 0.05 e Å⁻³ in steps of 0.01 e Å⁻³ and from 0.10 to 0.50 e Å⁻³ in steps of 0.05 e Å⁻³.

UV/Vis-Spektroskopie

Packung im Kristall

Rechnungen für freies Molekül

DFT method	Basis set	Interatomic distance ^b $(d_{C2-C3}) / Å$	Bond angle b ($\theta_{C2-C1-C3}$) / $^{\circ}$	
B3LYP	6-31G*	1.791	75.89	
B3LYP	6-31G**	1.794	76.01	
B3LYP	6-311G**	1.810	76.90	
B3LYP-D3	6-31G*	1.801	76.69	
B3LYP-D3	6-31G**	1.804	76.86	
B3LYP-D3	6-31+G**	1.802	76.70	
B3LYP-D3	6-311G*	2.047	89.25	
B3LYP-D3	6-311G**	2.048	89.33	
B3LYP-D3	6-311+G**	2.048	89.32	
B3LYP-D3	cc-pVDZ	2.071	90.20	
B3LYP-D3	cc-pVTZ	2.043	89.27	
B3LYP-D3(BJ)	6-31G*	2.108	92.42	
B3LYP-D3(BJ)	cc-pVTZ	2.100	92.26	
B3PW91-D3	6-311G*	1.726	73.17	
B3PW91-D3(BJ)	6-311G*	1.718	72.91	
B3PW91-D3	cc-pVTZ	1.725	73.30	
M06-2X	6-311G*	1.656	69.41	
M06-2X	cc-pVTZ	1.653	69.44	
wB97XD	6-31G*	1.667	69.96	
wB97XD	6-311G*	1.668	70.08	
wB97XD	cc-pVTZ	1.666	70.18	
PBE0-D3	6-311G*	1.696	71.67	
PBE0-D3(BJ)	6-311G*	1.692	71.53	

Rechnungen für freies Molekül

PBE0-D3BJ/def2-TZVPP PBE0-D3BJ/def2-QZVPP

QTAIM Analyse: kritische Punkte

2.096 Å

QTAIM Analyse: Elektronendichte

QTAIM Analyse: Laplacian von El.-Dichte

Quellen/Literatur

- D. W. H. Rankin, N. W. Mitzel, C. A. Morrison, Structural Methods in Molecular Inorganic Chemistry, John Wiley & Sons, Chichester, 2013.
- https://www.iucr.org/education
- P. G. Jones, "Crystal Structure Determination: A Critical View", Chem. Soc. Rev. 13 (1984) 157–172.
- Z. Dauter, M. Jaskolski, "How to Read (and Understand) Volume A of International Tables for Crystallography: An Introduction for Nonspecialists", *J. Appl. Cryst.* 43 (2010) 1150– 1171.
- http://webcsd.ccdc.cam.ac.uk
- R. F. W. Bader, Atoms in Molecules A Quantum Theory, Oxford University Press, Oxford, 1990.