Si₆Tip₆

Экспериментальное и теоретическое

исследование самой большой и сложной

молекулярной структуры в газовой фазе

Юрий В. Вишневский

Билефельдский Университет

2024

Стабильные изомеры Si₆R₆

A. Sekiguchi, T. Yatabe, C. Kabuto, H. Sakurai, J. Am. Chem. Soc., 115 (1993) 5853.

K. Abersfelder, A. J. P. White, H. S. Rzepa, D. Scheschkewitz, Science, 327 (2010) 564.

K. Abersfelder, A. J. P. White, R. J. F. Berger, H. S. Rzepa, D. Scheschkewitz, *Angew. Chem. Int. Ed.*, 50 (2011) 7936.

*Yu. V. Vishnevskiy, Y. Heider, D. Scheschkewitz, *ChemRxiv*, 10.26434/chemrxiv-2024-jb1v4 2

Наибольшие экспериментальные структуры в газ. фазе

Микроволновая спектроскопия:

- [1]: 378 amu, *r* = 9.7 Å, *C*₂, Степ.Св. = 91
 - *A* = 396, *B* = 159, *C* = 159 MHz

[1] A. Fokin et al., *JACS*, 139 (2017) 16696.

[2] Yu. Zhabanov et al., *J. Mol. Struct.*, 1092 (2015) 104.

Si₆Tip₆ еще больше и сложнее!

4

ГЭ @ Билефельд: Дифрактометр + масс-спектрометр

ГЭ @ Билефельд: IP сканер Amersham Typhoon

Amersham Typhoon: типы кодирования интенсивности

Разное кодирование одной и той же дифракционной картины (на примере CCl₄):

$$J_{\rm GEL} = 65535 \times \sqrt{\frac{I}{100000}} \qquad \qquad J_{\rm TIFF} = I \times \frac{65534}{\max I} \qquad \qquad J_{\rm IMG} = 65535 \times \frac{\log_{10} I}{5}$$

Amersham Typhoon: типы кодирования

Максимально подробная документация эксперимента!

Parameter	Ι	II
Common		
$L_{\rm nd}^{\rm a},{\rm mm}$	250.0	500.0
$V_{\rm ED}{}^{\rm b},{\rm kV}$	60	60
$V_{\rm MS}{}^{\rm c},{ m V}$	70	50 _
$P_{\rm ED,bgr}{}^{\rm d}, {\rm mbar}$	8×10^{-8}	4×10^{-7}
$P_{\rm MS,bgr}^{\rm e}$, mbar	7×10^{-8}	9×10^{-8}
Substance Si_6Tip_6		
$N_{\text{pattern}}^{\text{f}}$	4/4	6/6
$I_{\rm ED}{}^{\rm g},\mu{ m A}$	0.6	0.6
$T_{\rm noz}{}^{\rm h}, {\rm K}$	643(2)	647(2)
$P_{\rm ED,res}{}^{\rm i}$, mbar	9×10^{-8}	4×10^{-6}
$P_{\rm ED,samp}^{j}$, mbar	not determined	not determined
$P_{\rm MS,res}^{\rm k}$, mbar	$2 - 4 \times 10^{-7}$	2×10^{-7}
$t^{\rm l}, {\rm sec}$	1 - 120	15 - 25
s^{m} , Å ⁻¹	4.2 - 33.9	2.2 - 16.6
Δs^{n} . Å ⁻¹	0.1	0.1
$\overline{N}_{\mathrm{BGL}^{\mathrm{o}}}$	3	3
$R_{\mathrm{exp}}^{-\mathrm{p}}, \%$	6.4	3.5
$wR_{\mathrm{exp}}^{\mathrm{p}}$, %	2.3	2.6
Standard CCl_4		
$N_{ m pattern}{}^{ m f}$	2	5
$T_{\rm noz}^{\rm ph}, {\rm K}$	297(2)	297(2)
$N_{ m BGL}^{ m oo}$ o	4	3
$\lambda^{\mathrm{q}}, \mathrm{\AA}$	0.048887	0.048871
σ_{λ}^{r} , Å	0.000047	0.000044
$\hat{R_{\mathrm{mod}}}^{\mathrm{s}}, \%$	7.5 - 9.8	4.2 - 13.0
$wR_{\mathrm{mod}}{}^{\mathrm{s}}, \%$	7.5 - 9.8	4.2 - 13.0

Si₆Tip₆: ГЭ интенсивности

Выравнивание полных интенсивностей обязательно!

Si₆Tip₆: уточнение структуры

Основные принципы:

- 1) Уточнение геометрии в декартовых координатах.
- 2) Регуляризация во внутренних координатах.
- 3) Слабая регуляризация геометрии Si₆, сильная для всего остального.
- 4)Уточнение амплитуд в группах с использованием регуляризации.
- 5)Отказ от использования колебательных поправок из-за их низкой точности.
- 6) Лучше получить более точную структуру чем маленький *R*-фактор.

Si₆Tip₆: *sM*(*s*) интенсивности

После уточнения: wR_{str} = 7.2 %

Для сравнения: wR_{exp} = 2.5 %

Использование реалистичных экспериментальных погрешностей для взвешивания в МНК!

Si₆Tip₆: ГЭ кривые радиального распределения

Si₆Tip₆: структура фрагмента Si₆ 2.373(13) 2.3819(5)2.391(13) 2.414(13) 2.3806(6) 2.3782(6) 2.386(13) 2.392(13) 2.3806(6) 2.3782(6) 2.296(13) ГЭ *г*_а [Å] данная работа. 2.674(12) 2.3536(6) 2.7076(8) PCA r_{α} [Å] K. Abersfelder et al., Angew. Chem. Int. Ed., 50 (2011) 7936.

Связи Si–Si в газовой фазе: MOGADOC 2024

Связи Si–Si в кристаллах: CSD 2024

16

Осторожно, теоретические структуры!

Электронная структура Si₆Tip₆

(на основе геометрии из ГЭ)

FOD: <u>Fractional Occupation number weighted Density</u>

FT-PBE0/def2-TZVP (*T* = 10000 K): *N*_{FOD} = 2.66

Распределение FOD (0.003 a.e.):

"горячие" (химически активные, с большим вкладом в корреляцию) электроны:

Граничные орбитали (теория функционала плотности)

RKS-PBE0/def2-TZVP канонические орбитали:

Проблема с локализацией.

ВЗМО (-5.59 эВ)

НВМО (-1.73 эВ)

Посчитанные ранее: K. Abersfelder et al., *Angew. Chem. Int. Ed.*, 50 (2011) 7936.

NBO: натуральные связевые орбитали

σ*(Si1–Si5) [0.23 e]

- *нудо*-Si связаны: Si1–Si5
- Индекс Виберга для (Si1–Si5): 0.60
- Сильные взаимодействия $\sigma(Si-Si) \rightarrow \sigma^*(Si1-Si5)$

NBO: натуральные атомные заряды

CASSCF: <u>Complete</u> <u>Active</u> <u>Space</u> SCF

SS-CASSCF(6,6)/def2-TZVP:

B3MO (1.89 e)

- Решение: 93% "222000", 5% "220200"
- Порядок связи по Лёвдину для Si1–Si5: 0.75
- Дирадикальный характер β = 11 %

QTAIM: Quantum Theory of Atoms In Molecules

RKS-PBE0/def2-TZVP:

Электронная плотность

Лапласиан электронной плотности

- Нет ВСР критической точки и связевого пути для Si1-Si5.
- "Бифуркационная катастрофа": слияние точек ВСР и RCP даёт вырожденную точку RCP.
- Нет ССР. Есть три кольца: (Si1–Si2–Si5–Si6), (Si1–Si2–Si5–Si4), (Si1–Si2–Si3–Si4).

QTAIM: теория и эксперимент

[1] D. Kratzert et al., Angew. Chem. Int. Ed., 52 (2013) 4478.

QTAIM + IQA: Interacting Quantum Atoms

Выводы

- Si₆Tip₆ наибольшая и наисложнейшая структура исследованная в газовой фазе.
- Молекулы размера и сложности как Si₆Tip₆ могут быть исследованы ГЭ.
- Однако, точность и погрешность уточняемых параметров снижаются,
- а важность вспомогательных теоретических данных сильно увеличивается.

- Si₆Tip₆ синглет с закрытой электронной оболочкой, низким дирадикальным характером и слабой статической электронной корреляцией.
- Определенно выраженные связи Si–Si имеют типичную длину.
- Пара Si1–Si5 может быть охарактеризована как слабая ковалентная одинарная связь.
- Таким образом, это самая длинная связь Si-Si определенная в газовой фазе.