

Structure and internal dynamics of several 1,2-dicarba-closo-dodecaborane derivatives

D. Tikhonov

Skilizium, 2015

1,2-(SH)₂-1,2-dicarba-closododecaborane ("SH")

1,2-(SeH)₂-1,2-dicarba-closododecaborane ("SeH")

Wavefunctions for LAM vibrations in "SH", syn

v=26

 $E_{av} = 694.22 \text{ [cm}^{-1}\text{]} \quad v = 27$ $\Delta E = 0.031 \text{ [cm}^{-1}\text{]} \quad V_{A'} = 0 \quad ; v_{A''} = 4$

Wavefunctions for LAM vibrations in "SH", anti

v=28

 $E_{av} = 711.07 \text{ [cm}^{-1}\text{] } v = 29$ $\Delta E = 0.158 \text{ [cm}^{-1}\text{]}$ $V_{A} = 2 \text{ ; } v_{B} = 1$

Wavefunctions for LAM vibrations in "SeH", syn

v=12

 $E_{av} = 602.026 [cm^{-1}] v = 13$ $\Delta E = 0.02 [cm^{-1}]$ $V_{A'} = 0 ; v_{A''} = 3$

Wavefunctions for LAM vibrations in "SeH", syn

v=14

 $E_{av} = 606.41 \text{ [cm}^{-1}\text{]} \quad v = 15$ $\Delta E = 0.02 \text{ [cm}^{-1}\text{]}$ $V_{A'} = 2 \text{ ; } v_{A''} = 1$

Wavefunctions for LAM vibrations in "SeH", anti

v=16

Classical conformer distribution for "SH"

Classical conformer distribution for "SeH"

MD vs. Anharmonic Fields

 $1 < \frac{\tau_{MD}}{\tau_{cubic}} \approx \frac{ab(\omega_{max}/\omega_{min})}{36 N^2}$

a, *b* > 1

MD simulation

MD simulation

Problems of MD usage in GED

Absence of nuclei in classically forbidden zones

Problems of MD usage in GED

"Flying Ice Cube Effect"

GED for "I"

GED for "SH"

GED for "SeH"

Average B—B bond lengths in 1,2-dicarba-closo-dodecaboranes

^a – A.R. Turner, H. E. Robertson, K. B. Borisenko, D. W. H. Rankin, M. A. Fox, Dalton Trans., 2005, 1310 – 1318

Average B—C bond lengths in 1,2-dicarba-closo-dodecaboranes

[Å]	"_"a	"["	"SH"	"SeH"
r _g	1.717(7)	1.715(3)	1.718(11)	1.718(8)

^a – A.R. Turner, H. E. Robertson, K. B. Borisenko, D. W. H. Rankin, M. A. Fox, Dalton Trans., 2005, 1310 – 1318

C—C bond length in 1,2-dicarba-closo-dodecaboranes

[Å]	"_"a	"["	"SH"	"SeH"
r _g	1.624(8)	1.637(6)	1.763(16)	1.722(11)

^a – A.R. Turner, H. E. Robertson, K. B. Borisenko, D. W. H. Rankin, M. A. Fox, Dalton Trans., 2005, 1310 – 1318

Thank You For Your Attention!

B—B bond in 1,2-dicarba-closo-dodecaboranes

	" – "	""	"SH"	"SeH"
r _g	1.791(8)	1.793(12)	1.789(34)	1.786(23)
r _e		1.778(12)	1.773(34)	1.771(23)

B—C bond in 1,2-dicarba-closo-dodecaboranes

	" – "	"["	"SH"	"SeH"
r _g	1.717(7)	1.715(10)	1.718(33)	1.718(23)
r _e		1.699(10)	1.698(33)	1.698(23)

C—C bond in 1,2-dicarba-closo-dodecaboranes

	" – "	"["	"SH"	"SeH"
r _g	1.624(8)	1.637(18)	1.763(49)	1.722(34)
r _e		1.621(18)	1.753(49)	1.723(34)

[Å / °]	Anti-S	Syn-S	Anti-Se	Syn-Se
B-B(av)	1.773(35)	1.773(33)	1.771(24)	1.771(23)
B-C(av)	1.697(34)	1.698(33)	1.701(23)	1.695(22)
C-C	1.750(49)	1.756(50)	1.723(33)	1.723(34)
B-H(av)	1.189(35)	1.190(35)	1.195(24)	1.195(24)
X-H	1.341(36)	1.340(32)	1.466(24)	1.463(22)
C-X	1.749(25)	1.758(30)	1.898(17)	1.908(19)
φ	-90(3)	95(2)	-85(2)	93(1)
Х	0.56	0.44	0.56	0.44
R _f , [%]	4.	3	4.	.9

[Å / °]	re	rg
B-B(av)	1.778(12)	1.793(12)
B-C(av)	1.699(10)	1.715(10)
C-C	1.621(18)	1.637(18)
B-H(av)	1.183(13)	1.205(13)
C-H	1.088(12)	1.108(12)
B-I	2.139(8)	2.148(8)
R _f , [%]	4.3	

MD formulas for GED usage

$$r_{a} = 1/\langle \frac{1}{r} \rangle$$

$$r_{g} = \langle r \rangle$$

$$l^{2} = \langle r^{2} \rangle - \langle r \rangle^{2}$$

$$\kappa = \langle r^{3} \rangle - 3 \langle r \rangle \langle r^{2} \rangle + 2 \langle r \rangle^{2}$$

$$\langle x \rangle = \frac{1}{\tau} \int_{0}^{\tau} x(t) dt \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}$$

Quality of PES potential approximation for "SH"

Quality of PES potential approximation for "SeH"

Classical Distribution for "SH"

Classical Distribution for "SeH"

Barrier Heights for "SH" and "SeH"

[cm ⁻¹]	"SH"	"SeH"
BH1	681	626
BH2	773	423

Equilibrium torsion angles values for "SH" and "SeH"

[°]	"SH"	"SeH"
anti	87.3 / 90(3)	85.7 / 95(2)
syn	95.4 / 95(2)	88.7 / 93(1)