

IVANOVO STATE UNIVERSITY OF CHEMISTRY AND TECHNOLOGY

Universität Bielefeld

Combined gas-phase electron diffraction and mass spectrometry

Oleg A. Pimenov and Yuriy A. Zhabanov

Ivanovo GED group (Ivanovo state university of chemistry and technology

+ Ivanovo state university)

Foundation of Ivanovo GED group

Prof. George V. Girichev, the head of Ivanovo GED group

Prof. Sergey A. Shlykov

"electron diffractometer + mass spectrometer" (GED/MS)

1. Girichev G. V., Utkin A. N., Revichev Yu. F., Prib. Tekh. Eksp. (Russian) 1984, N2, 187-190;

Universität Bielefeld

2. Girichev G. V., Shlykov S. A., Revichev Yu. F., Ibid. (Russian) 1986, N4, 167-169

Complex approach

Ivanovo GED equipment

Ivanovo GED instrument/massspectrometer assembly

Even if all is not well, we smile...

Literature overview

N.N. Kamkin, L.G. Kuz'mina, D.B. Kayumova, N.G. Yaryshev, I.A. Dementiev, and A.S. Alikhanyan. Synthesis and Thermodynamic and Structural Characteristics of Thallium(I) Pivalate.Russian Journal of Inorganic Chemistry, 2012, Vol. 57, No. 9, pp. 1267–1271.

Thallium pivalate was synthesized and studied by mass spectrometry. It was shown that the set of characteristics makes thallium pivalate suitable as a precursor for the CVD preparation of oxide films and oxide materials.

GED/MS experiment

Temperature: 425(5) K

Wavelength of electrons: 0.0417 Å

The synthesis of thallium(I) pivalate was carried out *in situ*

Ag(piv) + TI = TI(piv) + Ag

Computational details

- Program : Gaussian 03
- Methods: DFT(B3LYP)
- Basis sets:
 - cc-pVTZ for \mathbf{O}, \mathbf{C} and \mathbf{H}

- ECP (60 electrons) + aug-cc-pVTZ-PP for Tl

Structural parameters

-	Parameters ^a				
C'		r _e	r_{hl}, \angle_{hl}	l	l
		B3LYP/	GED	GED	QC
ALC/A		cc-pVTZ			
-	r(Tl-O1)	2.468	2.412(7)в	0.143(4)	0.109
	r(Tl-O2)	2.457	2.423(7)	0.146(4)	0.112
The letter	r(O1-C3)	1.266	1.263(4)	0.042(3)	0.043
	r(O2-C3)	1.269	1.267(4)	0.042(3)	0.043
	r(C3-C4)	1.539	1.533(4)	0.053(3)	0.055
	r(C4-C5)	1.532	1.526(4)	0.053(3)	0.053
	r(C4-C6)	1.540	1.534(4)	0.053(3)	0.055
20 H	r(C-H) ^b	1.091	1.096(5)	0.076(3)	0.077
	r(O1O2)	2.217	2.185(10)	0.086(4)	0.052
Bara	∠O2-M-O1	53.5	53.7(2)		
	∠02-C3-O1	122.0	119.5(6)		
- Dilles	∠01-C3-C4	119.9	120.6(6)		
	∠C3-C4-C5	111.1	110.7(4)		
1	∠C3-C4-C6	108.0	107.6(4)		
- Color	τ(01-C3-C4-C5)	0.0	8.0(80)		(H)

^a Distances *r*, amplitudes *l* and shrinkage δ in Å, angle in deg.

^b Uncertainties given in parentheses were taken as: $[(2.5s_{LS})^2 + s_{scale}^2]^{1/2}$ ($\sigma_{scale} = 0.002r$, σ_{LS} is a standard deviation in least-squares refinement) for bond distances; $3\sigma_{LS}$ for bond angles.

(н)

Universität Bielefeld

Objects of DAAD project

1,8-bis(phenylethinyl)anthracene

Universität Bielefeld

1,8-bis(trimethylsilylethinyl)anthracene

Problem of vibration corrections

 r_e =4.602 Å SHRINK $\Delta r = r_{h1} - r_a = 17.38$ Å

MD simulation cp2k BLYP/DZVP MDVibCor $\Delta r = r_e - r_a = -0.975 \text{ Å}$

Current state of research

Dr. Natalya Tverdova and stud. Arseniy Olyotov

MD simulation and calculation of vibration corrections

Dr. Yuriy Zhabanov

Thank you for attention !

