

structural chemistry in the gas-phase

group seminar - 08.02.2016

Sebastian Blomeyer

retrospect – talk 05/15

 $H_3CC(O)OCH_2CCI_3$

calculations

results

"manuscript"

Mitzel Group inorganic & structural chemistry

 $H_3CC(O)OCH_2CCI_3 - QC$

syn–anti

syn-gauche

 $H_3CC(O)OCH_2CCI_3 - QC$

	Δ <i>E</i> / kJ mol ⁻¹	<i>E</i> _{barrier} / kJ mol ⁻¹	$\Delta G_{323 \text{ K}}$ / kJ mol ⁻¹	C _s :C ₁ ratio
B3LYP/6-311++G(d,p)	-0.1	+0.3	+1.8	0.66:0.34
B3LYP-D3/6-311++G(d,p)	-1.7	+0.3	+1.2	0.61:0.39
MP2/6-311G(d,p)	-1.8	+0.6	+0.9	0.58:0.42
MP2/6-311++G(d,p)	-1.5	+0.2	+1.5	0.64:0.36
MP2/cc-pVTZ	-1.2	+1.2	+0.4	0.54:0.46

 $\Delta E = E(syn-gauche)-E(syn-anti)$ $E_{barrier} = E(syn-anti)-E(TS)$ $\Delta G_{323 \text{ K}} = G_{323 \text{ K}}(syn-gauche)-G_{323 \text{ K}}(syn-anti)$ $C_{s}:C_{1} \text{ ratio: based on } \Delta G_{323 \text{ K}}$

 $H_3CC(O)OCH_2CCI_3 - QC$

stability of syn-gauche?

- \rightarrow IQA analysis (Interacting <u>Q</u>uantum <u>A</u>toms)
- \rightarrow I-SAPT analysis (Intramolecular Symmetry Adapted Perturbation Theory)

 $H_3CC(O)OCH_2CCI_3 - IQA$

interatomic interaction energies

atom pair	ΔE _{inter} / kJ mol ⁻¹
O(1)…H(11)	-41.1
C(2)…Cl(12)	-27.4
O(1)–C(2)	-18.5
O(4)…H(11)	-18.2
C(2)…C(5)	-17.4
C(2)…H(10)	-16.4
C(3)–H(8)	+12.1
O(1)…C(5)	+12.2
C(5)–H(11)	+16.4
O(1)…Cl(12)	+16.7
O(1)…H(10)	+19.5
C(2)…H(11)	+28.2
C(2)–O(4)	+74.0

 $H_3CC(O)OCH_2CCI_3 - QC$

stability of *syn–gauche*?

- \rightarrow IQA analysis (<u>Interacting</u> <u>Q</u>uantum <u>A</u>toms)
- \rightarrow I-SAPT analysis (Intramolecular Symmetry Adapted Perturbation Theory)

$H_3CC(O)OCH_2CCI_3 - I-SAPT$

- interactions between fragments of molecules
 - electrostatic
 - exchange (steric)
 - induction
 - dispersion

fragmentation	$\Delta E_{electrostatic}$	$\Delta E_{\text{exchange}}$	$\Delta E_{induction}$	Δ <i>E</i> _{dispersion}	$\Delta E_{I-SAPTO}$
H ₃ CC(O)–OCH ₂ CCl ₃	-11.7	+4.0	+2.3	-2.9	-8.3
H ₃ CC(O)O–CH ₂ CCl ₃	-13.2	+20.3	-5.1	-3.6	-1.6
H ₃ CC(O)OCH ₂ –CCl ₃	-20.5	+7.8	-0.1	-2.8	-15.6

 $\Delta E = E(syn-gauche)-E(syn-anti)$

 $H_3CC(O)OCH_2CCI_3 - GED$

vapour composition in the gas-phase?

- \rightarrow single-conformer models \bigcirc
- ightarrow two-conformer model
- \rightarrow dynamic models, starting parameters from:

(° °)

•••

••

- MP2 \rightarrow dyn1
- B3LYP-D3 \rightarrow dyn2
- B3LYP \rightarrow dyn3

$H_3CC(O)OCH_2CCI_3 - GED$

	noromotor / Å °	syn–anti (r _e)				
	parameter / A,	B3LYP	B3LYP-D3	MP2	GED	
8	d(O(1)=C(2))	1.204	1.203	1.205	1.214(5)	
<u> </u>	d(C(2)–C(3))	1.503	1.503	1.490	1.499(3)	
	d(C(2)–O(4))	1.362	1.361	1.355	1.338(5)	
	d(O(4)–C(5))	1.425	1.425	1.414	1.401(5)	
	d(C(5)–C(6))	1.527	1.527	1.510	1.522(4)	
	d(C(6)–Cl) _{mean}	1.798	1.800	1.766	1.765(1)	
	α(O(1)–C(2)–C(3))	126.6	126.8	126.7	126.6(27)	
	α(O(1)-C(2)-O(4))	122.7	122.7	122.8	125.5(23)	
	α(C(2)–O(4)–C(5))	115.7	115.6	113.6	113.0(19)	
	α(O(4)–C(5)–C(6))	108.4	108.3	107.6	105.6(8)	
	$\Phi(O(4)-C(5)-C(6)-Cl(14))$	180.0	180.0	180.0	173.4(15)	

$H_3CC(O)OCH_2CCI_3$

stability of syn-gauche conformer

O(1)…H(10/11) C(2)…Cl(12)

O(1)…Cl(12) C(2)…H(10/11)

electrostatics (& dispersion)

exchange

vapour composition in the gas-phase

MP2/cc-pVTZ dynamic model

ENDE

