

construction of a NEW gas electron diffractometer

caught between well-tried technology and new horizons

Sebastian Blomeyer Inorganic and Structural Chemistry

improvements over the last decade

2007 first setup in Bielefeld

2009^[1]

- + control devices
 - + analysers
 - + new nozzle

2011-2015^[2]

- + digital control
- + data logging
- + new beam stop

2013^[2]

- + new diff. pump
- + new back. pump

[1] R. J. F. Berger, M. Hoffmann, S. A. Hayes, N. W. Mitzel, *Z. Naturforsch.* 2009, 64b, 1259–1268.
[2] C. G. Reuter, Yu. V. Vishnevskiy, S. Blomeyer, N. W. Mitzel, *Z. Naturforsch.* 2016, 71b, 1–13.
Construction of a new gas electron diffractometer, Sebastian Blomeyer, 2.7.2019

improvements over the last decade

2015 + Hiden MS

2017/2018 chamber for MS

2018/2019 + extra vacuum + new IP scanner

2019 + lifting device for MS chamber

what currently cannot be improved

limitation to twelve image plates

breaking vacuum after each set of experiments

UNIVERSITÄT BIELEFELD Faculty of Chemistry **What currently cannot be improved**

two camera distances

risk of failure (no diffraction pattern, operating errors)

theoretical performance 12 plates/d \rightarrow 9 substance plates/d \rightarrow 3 data sets/2–3 d

real performance

2-3 data sets/month

bottlenecks of data acquisition and quality cannot be tackled within the current setup

 \rightarrow construction of a completely new gas electron diffractometer with

- additional on-line detection system
- feedthrough system for cooling trap
- feedthrough system for image plates
- more than twelve image plates
- better vacuum (<10⁻⁸ mbar)

additional ideas

- horizontally oriented (for modular concept)
- without any oil-based pumps (for better MS)
- only one camera distance, through
 - bigger IPs
 - better vacuum

UNIVERSITÄT BIELEFELD Faculty of Chemistry

- reservoir of ~30 IPs

- **DECTRIS** C. Schulze-Briese (ESGED15/16)
 - inherently not compatible with vacuum
 - company not focusing on small/single batch projects
 - expensive (~ 1€/pixel)

- founded out of DESY detector development group
- all products are compatible with vacuum
- focus on customised solutions

X-Spectrum Lambda – the detector

- single-photon (electron) counting
- 24bit counter depth
- energy thresholds/energy bins
- up to 2,000 fps
- 55 µm pixel size (IPs + scanner: 25–50 µm)
- modular concept

28 mm, 512 Pixel

X-Spectrum Lambda 60k – testing period

UNIVERSITÄT BIELEFELD X-Spectrum Lambda 60k – testing period

Faculty of Chemistry

X-Spectrum Lambda 60k – testing period

beam position

X-Spectrum Lambda 60k – testing period

ZnO (2s, 500 nA)

UNIVERSITÄT

BIELEFELD Faculty of Chemistry

max (255,0): 1,138,240 counts min (0,255): 288,596 counts reminder: saturation at 16,777,215 counts/s! CCl₄ (5s, 500 nA)

UNIVERSITÄT BIELEFELD Faculty of Chemistry **X-Spectrum Lambda 60k – testing period**

