

"Semi-experimental" structures demystified

Yury V. Vishnevskiy

17th ESGED, Hirschegg, Kleinwalsertal, Austria, July 2 – 6, 2017

GED: Refinement of Structure

Universität Bielefeld

$$I_{tot} = I_{mol} + I_{at} + I_{bgl}$$

$$sM(s) = \frac{sI_{mol}}{I_{at}} = \sum_{i>j}^{N} g_{i,j} e^{-\frac{(sI_{i,j})^2}{2}} \frac{\sin(sr_{i,j} - a_{i,j}s^3)}{r_{i,j}}$$

Inverse problem:

$$Q = \sum_{i}^{N} \left[sM(s|r,l,a)^{exp} - sM(s)^{model} \right]^{2} \rightarrow min$$

$$s = \frac{4\pi}{\lambda} \sin(\frac{\theta}{2})$$

- θ scattering angle,
- λ electron wavelength,
- g scattering factors,
- *r* interatomic distances,
- *l* amplitudes,
- *a* asymmetry constants.

In most cases refined structures are in fact semi-experimental because of using supplementary theoretical data:

- Corrections to geometrically consistent structure (r_{h0} , r_{h1} , r_{e}).
- Assumed vibrational amplitudes and/or their differences.
- <u>Assumed geometrical parameters and/or their differences.</u> and/or
- <u>Regularization parameters.</u>

To which extent

is refined structure experimental

if we use supplementary theoretical data?

Lev V. Vilkov (Moscow SU)

Tikhonov's regularization in GED: Bartel's "predicate observations", SARACEN

Regularization of internal coordinates:

$$Q = \sum \left[sM(s)^{exp} - sM(s)^{mod} \right]^2 + \alpha \sum_i w_i \left(p_i^0 - p_i^{mod} \right)^2 \rightarrow min$$

 $\alpha = 0 \longrightarrow$ Fully experimental structure (100 % experimental info. in refined prms.) $\alpha = \infty \longrightarrow$ Fully theoretical structure (0 % exp. info. in refined prms.) $\alpha = (0, \infty) \longrightarrow$ Semi-experimental structure (??? %). Used in practice!

L. S. Bartell, D. J. Romenesko, T. C. Wong, in *Molecular Structure by Diffraction Methods*, The Chemical Society, London, 1975, Vol. 3, pp 72 – 79.

A. J. Blake, P. T. Brain, H. McNab, J. Miller, C. A. Morrison, S. Parsons, D. W. H. Rankin, H. E. Robertson, B. A. Smart, *J. Phys. Chem.*, 1996, 100, 12280.

A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-posed Problems, Washington, DC: V. H. Winston & Sons, 1977.

Example 1: $closo-1,2-(SH)_2-1,2-C_2B_{10}H_{10}$

$$Q = \sum [sM(s)^{exp} - sM(s)^{mod}]^2 + \alpha \sum_i w_i (x_i^0 - x_i^{mod})^2 \rightarrow min$$

$$R_f = 4.3 \% \qquad \alpha = 5.0$$

Universität Bielefeld

O PH SO		MP2/cc-pVTZ	GE	ED
		$r_{ m e}$	$r_{ m e}$	r _g
	rC–B	1.704	1.702(4)	1.722(4)
	rC-C	1.756	1.755(7)	1.765(7)
	rB–B	1.782	1.777(5)	1.793(5)
	rC–S	1.769	1.755(4)	1.770(4)
	∠B-C-B	63.4	63.3(2)	
T	∠B–B–B	60.0	60.0(2)	
	∠S-C-C	118.0	118.0(1)	

(Semi?-) Experimental Structure?

T. Baše, P. D. Lane, Yu. V. Vishnevskiy, D. Tikhonov, C. G. Reuter, N. W. Mitzel, D. A. Wann, D. Hnyk, Inorg. Chem., in preparation.

$$Q = \underbrace{\sum \left[sM(s)^{\exp} - sM(s)^{mod} \right]^2}_{Q_{GED}} + \underbrace{\alpha \sum w(p^0 - p^{mod})^2}_{Q_{REG}} \rightarrow min$$

W2 Scheme

First empirical idea: use second derivatives

$$\frac{\partial^2 Q_{GED}}{\partial p^2} \qquad \frac{\partial^2 Q_{REG}}{\partial p^2}$$

$$W_{GED} = \frac{\frac{\partial^2 Q_{GED}}{\partial p^2}}{\frac{\partial^2 Q_{GED}}{\partial p^2} + \frac{\partial^2 Q_{REG}}{\partial p^2}}$$

D. S. Tikhonov, Yu. V. Vishnevskiy, A. N. Rykov, O. E. Grikina, L. S. Khaikin, J. Mol. Struct., 2017, 1132, 20–27.

$closo-1,2-(SH)_2-1,2-C_2B_{10}H_{10}$

	MP2/cc-pVTZ	GE	D
	$r_{ m e}$	$r_{ m e}$	$W_{ m GED}$
rB–H	1.181	1.186(5)	0.001
rS–H	1.339	1.341(5)	0.007
rС-В	1.704	1.702(4)	0.168
rC-C	1.756	1.755(7)	0.079
rB–B	1.782	1.777(5)	0.176
rC–S	1.769	1.755(4)	0.357
∠C-B-C	61.5	61.6(2)	?
∠C-B-B	58.3	58.4(2)	?
∠B-C-B	63.4	63.3(2)	?
∠B–B–B	60.0	60.0(2)	?
∠S-C-C	118.0	118.0(1)	?
∠С-В-Н	116.7	116.7(3)	?
∠CCSH(syn)	95.2	95.2(2)	?

Angles: coincidence?

 $closo-1,2-(SH)_2-1,2-C_2B_{10}H_{10}$

$$Q = \sum \left[sM(s)^{exp} - sM(s)^{mod} \right]^2 + \alpha \sum_i w_i (x_i^0 - x_i^{mod})^2 \rightarrow min$$

Uniform regularization: $w_1 = w_2 = w_3 = \dots = 1$.

	MP2/cc-pVTZ	GE	D
	$r_{ m e}$	$r_{ m e}$	W _{GED}
∠C-B-C	61.5	61.6(2)	0.051
∠C–B–B	58.3	58.4(2)	0.055
∠B–C–B	63.4	63.3(2)	0.053
∠B–B–B	60.0	60.0(2)	0.036
∠S-C-C	118.0	118.0(1)	0.128
∠С-В-Н	116.7	116.7(3)	0.015
∠CCSH(syn)	95.2	95.2(2)	0.000 ₇

Low w_{GED} for Angles!

Universität Bielefeld Want more "experiment" in parameters?

No problem, decrease α , but be ready to pay for this!

$$Q = \sum \left[sM(s)^{exp} - sM(s)^{mod} \right]^2 + \alpha \sum_i w_i (x_i^0 - x_i^{mod})^2 \rightarrow min$$

		MP2/	GED			
		cc-pVTZ	$\alpha = 0.7$		$\alpha = 43$	
		$r_{ m e}$	$r_{ m e}$	w	$r_{ m e}$	W
	rC-C	1.731	1.750(28)	0.933	1.726(5)	0.172
	rB–B	1.782	1.777(19)	0.943	1.775(3)	0.236
	rC-Se	1.904	1.902(10)	0.987	1.904(3)	0.521
	∠Se–C–C	119.2	119.2(4)	0.971	119.3(1)	0.319
	∠Se-C-B	118.9	119.1(9)	0.908	118.9(2)	0.172
	∠В-В-Н	123.1	123.0(12)	0.506	123.1(2)	0.016
	$R_{ m f}$, %	10.8	4.0		5.1	

T. Baše, P. D. Lane, Yu. V. Vishnevskiy, D. Tikhonov, C. G. Reuter, N. W. Mitzel, D. A. Wann, D. Hnyk, Inorg. Chem., in preparation.

More Theory: W12 Scheme

General form of functional:

Associated distributions (Gaussian approximation):

$$\Phi = \sum_{i} \Phi_{i} \rightarrow min$$

$$p_{i} = \frac{1}{\sqrt{2\pi}\sigma_{i}} \exp\left(\frac{-(\xi - \mu_{i})^{2}}{2\sigma_{i}^{2}}\right)$$

Kullback-Leibler divergence:

$$J(f_{1},f_{2}) = \int f_{1} \ln(\frac{f_{2}}{f_{1}}) dx + \int f_{2} \ln(\frac{f_{1}}{f_{2}}) dx$$

Derivatives:

$$a_i^{(k)} = \frac{\partial^k \Phi_i}{\partial \xi^k}$$
 $a^{(k)} = \sum_i a_i^{(k)}$

$$J(p_i, p) = \frac{1}{2} \left[\left(\frac{a_i^{(1)}}{a_i^{(2)}} - \frac{a^{(1)}}{a^{(2)}} \right)^2 \left(a_i^{(2)} + a^{(2)} \right) + \frac{a^{(2)}}{a_i^{(2)}} + \frac{a_i^{(2)}}{a^{(2)}} - 2 \right]$$

$$w_i = \frac{\frac{1}{J(p_i, p)}}{1} = \frac{1}{1}$$

$$\sum_{j} \frac{1}{J(p_{j},p)} \quad 1 + J(p_{i},p) \sum_{j \neq i} \frac{1}{J(p_{j},p)}$$

S. Kullback, R. A. Leibler, Ann. Math. Stat., 22, 1951, 79.

D. S. Tikhonov, Yu. V. Vishnevskiy, A. N. Rykov, O. E. Grikina, L. S. Khaikin, J. Mol. Struct., 2017, 1132, 20-27.

		MP2(full)/ cc-pwCVTZ		GED	
7 13		$r_{ m e}$	$r_{ m e}$	w12	w2
T	<i>r</i> C1–N2	1.336	1.341(2)	1.00	0.96
	rC1–C6	1.391	1.404(2)	1.00	0.96
12 1 N 6 2 N 5 3 10	<i>r</i> C3–H10	1.081	1.082(4)	0.02	0.21
	∠N2-C3-C4	122.0	122.1(2)	0.90	0.68
	∠N8-C7-O9	125.2	124.9(2)	1.00	0.88
	∠(X–C3–H10) _{av}	119.1	119.0(3)	0.26	0.39
	∠H13–N8–H14	121.8	121.8(3)	0.00	0.03
11					1.

Consistent results

D. S. Tikhonov, Yu. V. Vishnevskiy, A. N. Rykov, O. E. Grikina, L. S. Khaikin, J. Mol. Struct., 2017, 1132, 20-27.

$$Q = \underbrace{\sum \left[sM(s)^{\exp} - sM(s)^{mod} \right]^2}_{Q_{GED}} + \underbrace{\alpha \sum w \left(B^{\exp} - B^{mod} \right)^2}_{Q_{ROT}} \rightarrow min$$

Parameter	Calcd.	MW	GED	GED+MW	W _{GED}
<i>r</i> C1–C2	1.323	1.319(2)	1.324(1)	1.317(1)	0.15
<i>r</i> C2–C3	1.503	1.503(2)	1.494(1)	1.497(1)	0.15
rC2–F	1.335	1.333(1)	1.333(1)	1.334(1)	0.23
$r(C3-F)_{av}$	1.333	1.333(1)	1.334(1)	1.335(1)	0.23
$r(C1-H)_{av}$	1.078	1.070(29)	1.098(4)	1.085(3)	0.36
∠C1–C2–C3	125.9	126.1(1)	124.7(1)	125.8(1)	0.22
φC1–C2–C3–F	120.3	120.5(1)	121.5(1)	120.5(1)	0.02
R _f , %			4.45	4.72	

Calcd. = full-CCSD(T)/cc-pwCVTZ

GED+MW: $|B^{exp} - B^{mod}|$ were approx. 1% of *d*B.

M. D. Marshall, H. O. Leung, B. Q. Scheetz, J. E. Thaler, J. S. Muenter, J. Mol. Spectr., 266, 2011, 37-42.

Thank you for your attention!