

Intramolecular dispersion interactions

Sebastian Blomeyer

17th European Symposium on Gas-Phase Electron Diffraction

Hirschegg, Kleinwalsertal, Austria

04/07/2017

[3] P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Yu. Tikhonchuk, H. Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, *Nature* 2011, 477, 308 – 311.
[4] R. Boese, H.-C. Weiss, D. Bläser, *Angew. Chem.* 1999, 38, 988 – 992.

[5] A. A. Fokin, L. V. Chernish, P. A. Gunchenko, E. Yu. Tikhonchuk, H. Hausmann, M. Serafin, J. E. P. Dahl, R. M. K. Carlson,
 P. R. Schreiner, J. Am. Chem. Soc. 2012, 134, 13641 – 13650.

QC

d(C–C)_{central} 1.630(5) Å

d(C–C)_{intra-fragment} 1.530(1) – 1.573(1) Å

d(С–Н) 1.095(2) – 1.106(2) Å Ф(Dia–Dia) 87(2)°

 $R_{\rm f} = 1.9 \%$

[3] P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Yu. Tikhonchuk, H. Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, *Nature* **2011**, *477*, 308 – 311.

FTMW

GED & FTMW

	GED	GED+MW
<i>R</i> _f / %	2.1	2.1
syn:anti	50:50(11)	49:51(14)
Ф _{syn} / °	87(2)	87(1)
Φ_{anti} / °	-92(2)	-93(2)
d(C–C) _{central} / Å	1.632(9)	1.632(5)

experiment/theory

×

	d(C–C) _{central} / Å				
	GED	GED+MW	M06-2X/ cc-pVDZ	MP2/ cc-pVTZ	XRD
syn	1.632(9)	1.632(5)	1.636	1.622	1.643(4)
	1.630(5)		1.646	1.633	1.647(2)

London dispersion forces: $\pi-\pi$

	m.p. / °C ^[6]
C ₆ H ₆	6
C_6F_6	4
C ₆ H ₆ :C ₆ F ₆ (1:1)	24

π -stacking in general^[9]

 $C_6H_6-C_6F_6$ dimer^[10]

magnitude: dispersion substituent effects: electrostatic

major source of attraction: dispersion

[6] C. R. Patrick, G. S. Prosser, *Nature* 1960, *187*, 1021.
[7] J. H. Williams, J. K. Cockcroft, A. N. Fitch, *Angew. Chem. Int. Ed. Engl.* 1992, *31*, 1655 – 1657.
[8] C. Garau, A. Frontera, D. Quinonero, P. Ballester, A. Costa, P. M. Deya, *Chem. Phys. Chem.* 2003, *4*, 1344 – 1348.
[9] M. O. Sinnokrot, C. D. Sherrill, *J. Am. Chem. Soc.* 2004, *126*, 7690 – 7697.
[10] S. Tsuzuki, T. Uchimaru, M. Mikami, *J. Phys. Chem. A* 2006, *110*, 2027 – 2033.

London dispersion forces: $\pi-\pi$

rotational dynamics (NMR)^[11,12]

XRD: Anth–Ph interactions

GED: Ph-Ph (parallel displaced)

- [11] F. Cozzi, J. S. Siegel, Pure Appl. Chem. **1995**, 67, 683.
- [12] F. Cozzi, R. Annunziata, M. Benaglia, K. K. Baldridge, G. Aguirre, J. Estrada, Y. Sritana-Anant, J. S. Siegel, *Phys. Chem. Chem. Phys.* **2008**, *10*, 2686.
- [13] J.-H. Lamm, J. Horstmann, H.-G. Stammler, N. W. Mitzel, Yu. A. Zhabanov, N. V. Tverdova, A. A. Otlyotov, N. I. Giricheva, G. V. Girichev, Org. Biomol. Chem. 2015, 13, 8893.

	Core Facility GED @ Bi Gas-Electron-Diffract Small Molecule Structure	y ion & es Centre	XR	D	Mitze Group inor	rganic & structural chemistry
F(3	F(2) F(2)	C(1) C(16) C(9) C(11) C(10) C(10) C(8) C(8) C(8) C(8) C(8) C(10)	(15) C(14) C(13) C(12) $P2_1/C$ R = 6.3%		3.621(5) Å	
	C(1)-Si(1)	1.912(3)		C(1)-Si(1)-C(9)	109.4(1)	
	Si(1)–C(9)	1.873(3)		Si(1)-C(9)-C(10)	112.9(2)	
	C(9)–C(10)	1.528(4)		C(9)-C(10)-C(11)	116.1(2)	
	C(10)–C(11)	1.523(3)				13

QMDFF(PBEh-3c, 900 K)		1	
	Δ <i>E /</i> kJ mol ⁻¹	Si F ₅	Si F ₅
	ag	17.7	14.3
anti-gauche	σπ	13.9	16.5
	ππ	0	0
	d _{centroids} (ππ)	3.57 Å	3.53 Å
	d _{centroid-H} (σπ)	2.74 Å	2.84 Å
ππ	TPSS-D3BJ(abc)/def2-TZVP		
σπ			14

Core Facility GED @ Bi Gas-Electron-Diffracti Small Molecule Structure	/ ion & s Centre	XR	D	Mi	tzel inorganic & structural chemistry
F(2) F(3) C(3) C(4) F(4)	$E^{(1)} = F(1)$ $C(1) = C(8)$ $C(6) = C(7)$ $F(5)$	C(15) C(10) C(9) C(11)	4) C(13) C(12) C(12) 3.621(5) Å	<i>Cc</i> R = 2.9 %
	<i>d </i> Å			ヸ /°	
C(6)–C(7)	1.507(2)		C(6)–C(7)–C(8)	111.8(1)	
C(7)–C(8)	1.531(2)		C(7)–C(8)–C(9)	113.0(1)	
C(8)–C(9)	1.537(2)		C(8)-C(9)-C(10)	111.1(1)	
C(9)–C(10)	1.511(2)				17

QMDFF(PBEh-3c, 900 K)			I
		Δ <i>E /</i> kJ mol ⁻¹	F ₅
anti-gauche		aa	10.7
anti-anti		ag	10.1
		ga	10.1
		gg	9.4
	gauche-anti	ππ	0
gauche-gauche ^{ππ}		d _{centroids} (ππ)	3.57 Å
		TPSS-D3BJ(abc)/c	lef2-TZVP

summary

conformational landscape dominated by π–π interactions

acknowledgements

Lesya Chernish Tatyana Zhuk (both KPI Kiew)

Christian Logemann (JLU Gießen)

> Cristóbal Pérez (MPI Hamburg)

Marvin Linnemannstöns Jan Nissen Jannik Paulus (all Bielefeld University)

DFG

