

Universität Bielefeld

Low-Pressure Gas Electron Diffraction

Yury V. Vishnevskiy

16th ESGED, Frauenchiemsee, June 21 – 26, 2015

GED for low-volatile and thermally unstable compounds.

 $\begin{array}{ll} \text{Normal GED: } P_{\text{sample}} \sim 1 - 10 \text{ mbar} \\ \text{LP GED:} & P_{\text{sample}} < 10^{\text{-2}} \text{ mbar} \end{array}$

- High-temperature GED.
- Combined MS+GED experiments.
- Molecular beams.
- Highly reproducible experimental conditions.
- Experimental background.

- N. G. Rambidi, E. Z. Zasorin, Teplofiz. Vys. Temp., 2, 1964, 705. (in Russian)
- I. Hargittai, M. Hargittai, V. P. Spiridonov, E. V. Erokhin, J. Mol. Struct., 8, 1971, 31.
- A. A. Ivanov, Prib. Tekh. Eksp., 2, 1974, 237. (in Russian)
- J. Tremmel, I. Hargittai, Hung. Sci. Instrum., 50, 1980, 43.
- I. Hargittai, S. Bohatka, J. Tremmel, I. Berecz, Hung. Sci. Instrum., 50, 1980, 51.
- A. A. Ivanov, E. Z. Zasorin, Prib. Tekh. Eksp., 6, 1980, 170. (in Russian)
- L. S. Bartell, R. K. Heenan, M. Nagashima, J. Chem. Phys., 78, 1983, 236.
- K. S. Krasnov, Zh. Strukt. Khin., 24, 1983, 3. (in Russian)
- J. Tremmel, I. Hargittai, J. Phys. E Sci. Instrum., 18, 1985, 148.
- G. V. Girichev, S. A. Shlykov, Yu. F. Revichev, Prib. Tekh. Eksp., 4, 1986, 167. (in Russian)
- G. V. Girichev, S. A. Shlykov, S. B. Lapshyna, Z. Fiz. Khim., 64, 1990, 899. (in Russian)
- A. Haaland, K. G. Martinsen, J. Tremmel, Acta Chem. Scand., 46, 1992, 589.
- S. L. Masters, G. V. Girichev, S. A. Shlykov, Dalton Trans., 42, 2013, 3581.

P. A. Akishin, V. P. Spiridonov, Kistallografiya, 2, 1957, 475. (in Russian)

P. A. Akishin, N. G. Rambidi, E. Z. Zasorin, Kistallografiya, 4, 1959, 186. (in Russian)

Molecular beams

Universität Bielefeld

C. B. Lucas, Atomic and Molecular Beams, CRC Press, 2014.

Proposed by A. A. Ivanov (MSU).

Target — "Molecular film".

CAD Model

Inlet system

Real prototype

MS

MS+GED @ Bielefeld

Hiden EPIC ion counting detector (up to 2500 amu)

Test measurements

First measurements: Benzoic acid

	Vishnevskiy et al., 2015	Aarset et al., 2006
Temperature, K	287	406
Sample pressure, mbar	2.7×10 ⁻⁴	17
Background pressure, mbar	1×10 ⁻⁷	?
Electron beam current, µA	10.9	?
Exposure time, s	60	?

K. Aarset, E. M. Page, D. A. Rice, J. Phys. Chem. A, 110, 2006, 9014.
M. Colomina, P. Jimenez, C. Turrion, J. Chem. Thermodyn., 14, 1982, 779.
C. G. de Kruif, J. G. Blok, J. Chem. Thermodyn., 14, 1982, 201.

Benzoic acid

Universität Bielefeld

Parameter, [Å, °]	Vishnevskiy et al., 2015	Aarset et al., 2006
$r_{\rm a}({\rm C_{ar}-C_{ar}})_{\rm av}$	1.393(1)	1.397(6)
$r_{\rm a}({\rm C_{ar}}-{\rm C})$	1.475(7)	1.475(21)
$r_{a}(C=O)$	1.207(4)	1.220(18)
$r_{\rm a}$ (C-O)	1.347(8)	1.359(24)
$l(C_{ar}-C_{ar})$	0.053(2)	0.054(18)
R _f , %	2.6	?

Errors: 3σ

K. Aarset, E. M. Page, D. A. Rice, J. Phys. Chem. A, 110, 2006, 9014.

Iodoform, CHI₃

	Vishnevskiy et al., 2015	Takeuchi et al., 2003
Temperature, K	288	395
Electron beam current, μA	0.9	1.5
Exposure time, s	45 - 90	110 - 140

H. Takeuchi, T. Ozaki, T. Takeshima, T. Egawa, S. Konaka, J. Mol. Struct., 657, 2003, 381.

Iodoform, CHI₃

1...1

4

Universität Bielefeld

Parameter,	Takeuchi et al., 2003	Vishnevskiy et al., 2015		Calculated
[A, ⁻]	$\Gamma_{\rm g}$	Γ _g	Γ _e	Γ _e
<i>r</i> (C-H)	1.111 assumed	1.128(107)	1.107(107)	1.081
<i>r</i> (C–I)	2.145(8)	2.130(6)	2.119(6)	2.125
<i>r</i> (II)	3.549(2)	3.536(1)	3.522(1)	3.531
l(C-I)	0.067(7)	0.0	67(1)	0.055
<i>l</i> (II)	0.108(2)	0.101(2)		0.084
R _f , %	?	Ę	5.1	

QC geometry: CCSD(T)/CBS-PP, Amplitudes: MP2/SDB-cc-pVTZ

Errors: 3σ

Δ

6

5

H. Takeuchi, T. Ozaki, T. Takeshima, T. Egawa, S. Konaka, J. Mol. Struct., 657, 2003, 381.

Carbon tetraiodide, CI_4

	Vishnevskiy et al., 2015	Hargittai et al., 2001
Temperature, K	290	396
Electron beam current, µA	4.8	?
Exposure time, s	20 - 60	?

Combined GED+MS @ 290 K

Hargittai: ~ 20% I_2 @ 396 K

Fig. 2. Experimental (E) and calculated (T) radial distributions for Model 1 and their differences (Δ) for the three models of Table VII. The contribution of the distances of CI₄ and I₂, and the position of the longest I···I distance of C₂I₄ from Model 1 are indicated. Δ 4 corresponds to a model with CI₄ and I₂ only.

M. Hargittai, G. Schultz, P. Schwerdtfeger, M. Seth, Struct. Chem., 12, 2001, 377.

Carbon tetraiodide, CI_4

Parameter,	Hargittai et al., 2001	Vishnevskiy et al., 2015		Calculated
[Å, °]	$r_{ m g}$	$r_{ m g}$	$r_{ m e}$	$r_{ m e}$
r(C-I)	2.157(6)	2.142(1)	2.132(1)	2.144
<i>r</i> (II)	3.530(7)	3.496(2)	3.482(2)	3.501
<i>l</i> (C–I)	0.063 assumed	0.046(22)		0.058
<i>l</i> (II)	0.106(23)	0.114(3)		0.083
R _f , %	5.4	7.1		

QC geometry: CCSD(T)/CBS-PP, Amplitudes: MP2/SDB-cc-pVTZ

Errors: 3σ , 2σ +se

M. Hargittai, G. Schultz, P. Schwerdtfeger, M. Seth, Struct. Chem., 12, 2001, 377.

- Ring cell works!
- Successfully tested MS+GED.
- It is possible to avoid substance decomposition.
- Refined parameters are
 - a) precise and accurate,
 - b) consistent with published data.

- Implement heating of the effusion cell.
- Tune mass-detector and optimize its position.
- Measure new compounds.

Bielefeld:

- Christian G. Reuter
- Sebastian Blomeyer
- Norbert W. Mitzel

Ivanovo:

- Sergey A. Shlykov
- Oleg Pimenov
- Yury Zhabanov

Moscow:

- Arkadii A. Ivanov
- Denis Tikhonov (now in Bielefeld)

DFG

Thank you for your attention!