

Gas Electron Diffraction

Eliminating Ambiguities of Quantum Chemistry

Sebastian Blomeyer

16th European Symposium on Gas-Phase Electron Diffraction (ESGED16)

Frauenchiemsee, June 23, 2015

Ferrocenes

Ferrocenes – history

- 1966 gas-phase structure of Ferrocene^[1]
- 1968 rotational barrier of Ferrocene^[2]

1979 – gas-phase structure and rotational barrier of Me₁₀Ferrocene^[3]

2010 – gas-phase structure and rotational barrier of Cl_{10} Ferrocene^[4] 2015 – F_5 Ferrocene^[5]

- [1] R. K. Bohn, A. Haaland, J. Organomet. Chem. **1966**, *5*, 470.
- [2] A. Haaland, J. E. Nilsson, Acta Chem. Scand. 1968, 22, 17.
- [3] A. Almenningen, A. Haaland, S. Samdal, J. Brunvoll, J. L. Robbins, J. C. Smart, J. Organomet. Chem. 1979, 173, 293.
- [4] L. Phillips, M. K. Cooper, A. Haaland, S. Samdal, N. I. Giricheva, G. V. Girichev, Dalton Trans. 2010, 39, 4631.
- [5] K. Sünkel, S. Weigand, A. Hoffmann, S. Blomeyer, C. G. Reuter, Yu. V. Vishnevskiy, N. W. Mitzel, J. Am. Chem. Soc. 2015, 137, 126-129.

Ferrocenes – GED

compound (Fc=Ferrocene)	Δ <i>E</i> / kJ mol⁻¹	C ₅ –X bending (+ towards, – away from Fe)
$H_{10}Fc^{[1,2]}$	-3.8(13)	+3.7(9)°
$Me_{10}Fc^{[3]}$	+4.2(13)	-3.4(5)°
$CI_{10}Fc^{[4]}$	+0.8(2)	-3.7(3)°

 $\Delta E = E_{\rm ecl} - E_{\rm stag}$

1,2,3,4,5-Pentafluoroferrocene: first "mixed-ligand" and first fluorinated metallocene in GED

 \rightarrow hard to predict any structural feature

 F_5 Ferrocene – QC

	PBE0 / 6-311G**	Method		$\Delta E / kJ mol^{-1}$	d(Fe–C _F) / Å
$E/kJ mol^{-1}$	3 - PBE0 / 6-311+G**	PBEO	6-311G(d,p)	+2.7	1.999
	2.5		6-311+G(d,p)	-2.3	2.007
			cc-pVTZ	-2.2	2.013
		MP2	6-311G(d,p)	-5.8	1.862
			6-311+G(d,p)	-20.8	1.865
			cc-pVTZ	-17.1	1.856
	0 6 12 18 24 30 36 42 48 54 60 66 72 Φ(Cp ^f -Cp) / °	$\Delta E = E_{\rm ecl} \cdot$	- E _{stag}		

sample provided by: Prof. Dr. K. Sünkel, LMU München

sample provided by: Prof. Dr. K. Sünkel, LMU München

sample provided by: Prof. Dr. K. Sünkel, LMU München

F₅Ferrocene – GED

internal rotation

- isolated vibrational mode
 - $\tilde{v} = 27 \text{ cm}^{-1} \text{ (PBEO/cc-pVTZ)}$
- external potential
 - $V(\Phi) = V_5 [(1 \cos(5\Phi))] / 2$

Results^[5]:

- eclipsed minimum
- $V_5 = 2.4(8) \text{ kJ mol}^{-1}$
- C₅–H bent inwards (+1.6(6)°)
- C₅–F bent outwards (-3.7(3)°)
- $d(Fe-(C_5F_5)) < d(Fe-(C_5H_5))$:
 - 1.606(5) Å vs. 1.679(4) Å

 $R_{\rm f} = 4.4 \%$

Ferrocenes – structures

compound (Fc=Ferrocene)	Δ <i>E</i> / kJ mol ^{−1}	C ₅ —X bending (+ towards, – away from Fe)
$H_{10}Fc^{[1,2]}$	-3.8(13)	+3.7(9)°
$Me_{10}Fc^{[3]}$	+4.2(13)	-3.4(5)°
$CI_{10}Fc^{[4]}$	+0.8(2)	-3.7(3)°
F ₅ Fc ^[5]	-2.4(8)	C ₅ −H: +1.6(6)°, C ₅ −F: −3.7(3)°
Cl ₅ Fc (PBE0/cc-pVTZ)	-1.3	C ₅ -H: +2.9°, C ₅ -Cl: -4.4°
Br ₅ Fc (PBE0/cc-pVTZ)	-0.8	C ₅ -H: +3.1°, C ₅ -Br: -4.3°
F ₁₀ Fc (PBE0/cc-pVTZ)	-3.2	-2.7°

 $\Delta E = E_{\rm ecl} - E_{\rm stag}$

 \rightarrow equilibrium structure: interplay of steric repulsion and dispersive attraction

 \rightarrow bending: ligand-specific and -intrinsic effect

1-(1-Diamantyl)diamantane

Bis-diamantane – QC

QC method	d(C–C) _{long} / Å
B3LYP/6-31G(d,p)	1.674 ^[6]
B3LYP-D/6-31G(d,p)	1.648 ^[6]
B3LYP-D3/6-31G(d,p)	1.665
B3LYP-D3/cc-pVTZ	1.664
MP2/6-311G(d,p)	1.636

"...we estimate that a value of 1.655 Å would be the most realistic approximation of the central bond length [...] in the gas phase."^[7]

[6] P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Yu. Tikhonchuk, H. Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, *Nature* 2011, 477, 308.
[7] A. A. Fokin, L. V. Chernish, P. A. Gunchenko, E. Yu. Tikhonchuk, H. Hausmann, M. Serafin, J. E. P. Dahl, R. M. K. Carlson, P. R. Schreiner, J. Am. Chem. Soc. 2012, 134, 13641.

Bis-diamantane – GED

Core Facility GED @ Bi Gas-Electron-Diffraction & Small Molecule Structures Centre

GED experiments at 310 °C:

• very intense diffraction

sample provided by: Prof. Dr. P. R. Schreiner, JLU Gießen

 $R_{\rm f} = 1.68 \%$

 $\mathcal{D} \approx 40^{\circ} \rightarrow R_{\rm f} = 3.9 \%$ $\mathcal{D} \approx 150^{\circ} \rightarrow R_{\rm f} = 4.5 \%$

atom-richest compound @ BI

Bis-diamantane – GED

distance/a

 $d(C-C)_{long}$

d(C–C)_{other}

 Φ (Dia-Dia)

ngle [Å/°]	$r_{\rm e}$ / ${\cal \Phi}_{\rm e}$ (GED)	
	1.603(12)	d(C–C) _{long}
	1.524(5)-1.567(5)	

d(C–C)_{long} significantly shorter than:

- all calculations (shortest: 1.636 Å)
- XRD (1.647 Å)
- "estimated" value (1.655 Å)

 \rightarrow calculations: underestimate strength of dispersion forces

 \rightarrow GED structures: benchmarks for improvements?

92.3(15)

Summary

Flexiblity in 1,2,3,4,5-Pentafluoroferrocene

eclipsed equilibrium $\Delta E = 2.4(8) \text{ kJ mol}^{-1}$ H atoms bent inwards F atoms bent outwards Dispersion Forces in 1-(1-Diamantyl)diamantane

1.636–1.674 Å (QC) vs. 1.603(12) Å (GED)