# On the Molecular Structures of P<sub>4</sub> and AsP<sub>3</sub>

Raphael J. F. Berger Paris-Lodron Universität Salzburg



#### Overview

P<sub>4</sub>
 P<sub>3</sub>As

GED (Maxwell, Hendricks, Mosley, 1935, Washington DC, US)
 r<sub>a</sub> = 2.21 Å @ 200°C, optical method, incremental refinement

- GED (Maxwell, Hendricks, Mosley, 1935, Washington DC, US)
  r<sub>a</sub> = 2.21 Å @ 200°C, optical method, incremental refinement
- XRD liquid(!) (Thomas, Newell, Gingrich, **1938**, Columbia, US)
  r = 2.25 Å @ 48°C and 226°C

## XRD (liquid P<sub>4</sub>)



J. Chem. Phys. 6 (1938) 659



- GED (Maxwell, Hendricks, Mosley, 1935, Washington DC, US)
  r<sub>a</sub> = 2.21 Å @ 200°C, optical method, incremental refinement
- XRD liquid(!) (Thomas, Newell, Gingrich, **1938**, Columbia, US)
  r = 2.25 Å @ 48°C and 226°C
- XRD α-P<sub>4</sub> (v. Schnering **1981**, Stuttgart, DE) 56 molecules in unit cell rotational disorder @ > -76.4°C, no P-P distance

- GED (Maxwell, Hendricks, Mosley, 1935, Washington DC, US)
  r<sub>a</sub> = 2.21 Å @ 200°C, optical method, incremental refinement
- XRD liquid(!) (Thomas, Newell, Gingrich, **1938**, Columbia, US)
  r = 2.25 Å @ 48°C and 226°C
- XRD α-P<sub>4</sub> (v. Schnering **1981**, Stuttgart, DE) 56 molecules in unit cell rotational disorder @ > -76.4°C, no P-P distance
- XRD β-P<sub>4</sub> (Simon, Borrmann, Craubner, 1987, Stuttgart, DE)
  r = 2.2095(5) @ -115°C

# XRD ( $\beta$ -P<sub>4</sub>)



#### FIGURE 1

Projection of the structure of B-P on (010). The thermal ellipsoids are drawn at 50% probability.

J. Mol. Struct. 30 (1987) 507

- GED (Maxwell, Hendricks, Mosley, 1935, Washington DC, US)
  r<sub>a</sub> = 2.21 Å @ 200°C, optical method, incremental refinement
- XRD liquid(!) (Thomas, Newell, Gingrich, **1938**, Columbia, US)
  r = 2.25 Å @ 48°C and 226°C
- XRD α-P<sub>4</sub> (u.a. v. Schnering **1981**, Stuttgart, DE) 56 molecules in unit cell rotational disorder @ > -76.4°C, no P-P distance
- XRD β-P<sub>4</sub> (Simon, Borrmann, Craubner, 1987, Stuttgart, DE)
  r = 2.2095(5) @ -115°C

Vib.-rot resolved RAMAN (Brassington, Edwards, Long, 1981, Bradford, UK)
 r<sub>0</sub> = 2.2228(5) Å @ 176.9°C

- (100) -> 22%, (010) -> 80%, (001) -> 93%
- *J*<sub>max.</sub>= 58 @ 176.9°C
- symmetric top is not Boltzmann-populated

## P<sub>4</sub> theoretcial

•  $r_e = 2.194$  Å (Häser, Treutler, **1995**, Karlsruhe, DE)



#### Marco Häser

1996 01:00 at cottage close to Bernina after 20 h climb (courtesy Dage Sundholm)

- lead development of TM with Ahlrichs
- Predicted fibrous red-P modification which was found exp. 2004
- + 1997

#### P<sub>4</sub> theoretcial I

- *r<sub>e</sub>* = 2.194 Å (Häser, Treutler, **1995**, Karlsruhe, DE) approx. CCSD(T)/(*11s10p6d5f1g*)
  - $r_0$  from RAMAN study 2.2228(5) Å "is likely to be in error and should be reinvestigated"
  - -0.001 Å relativistic correction [scalar]
  - -0.007 Å core correlation effect

#### P<sub>4</sub> theoretcial I

- *r<sub>e</sub>* = 2.194 Å (Häser, Treutler, **1995**, Karlsruhe, DE) approx. CCSD(T)/(*11s10p6d5f1g*)
  - $r_0$  from RAMAN study 2.2228(5) Å "is likely to be in error and should be reinvestigated"
  - -0.001 Å relativistic correction [scalar]
  - -0.007 Å core correlation effect
- *r<sub>e</sub>* = 2.186 Å (Persson, Taylor, Lee, **1997**, San Diego, US)
  JCP 107 (1997) 5051
  - CCSD(T)/(17s12p7d5f1g)/[6s5p4d3f2g1h] -> 2.188 Å
  - estimated 2.186 Å as BO-limit
    - almost basis set saturation
    - no rel. effect
    - very close to full correlation [?] T<sub>1</sub> = 0.018
    - core correlation included (estimate)
    - $r_0 r_e = 0.005 \text{ Å}$

#### P<sub>4</sub> theoretcial II

- CCSD(T)/(17s12p7d5f1g)/[6s5p4d3f2g1h]: r<sub>e</sub>= 2.188 Å
  - Almost basis set saturation
  - no rel. Effect (Häser: -0.001 Å)
  - very close to full correlation [?] T<sub>1</sub> = 0.018
  - core correlation (Häser): -0.007 Å
  - estimated  $r_e = 2.186$  Å
  - $r_0 r_e = 0.005$  Å (based on anharmonic force field)

#### P<sub>4</sub> theoretcial II

- CCSD(T)/(17s12p7d5f1g)/[6s5p4d3f2g1h]: r<sub>e</sub>= 2.188 Å
  - Almost basis set saturation
  - no rel. Effect (Häser: -0.001 Å)
  - very close to full correlation [?] T<sub>1</sub> = 0.018
  - core correlation (Häser): -0.007 Å
  - estimated  $r_e = 2.186 \text{ Å}$
  - $r_0 r_e = 0.005$  Å (based on anharmonic force field)
  - F12-CCSD(T)/(20s15p7d5f3g1h)/[10s9p7d5f3g1h]:r<sub>e</sub>=2.1860 Å
    JACS 132 (2010) 8459
    - basis set limit (F12 and aug-cc-pwCVQZ)
    - core correlation ( -0.0072 Å)
    - Shrink: *r<sub>h1</sub> r<sub>e</sub>* = 0.003 Å
    - relativity (no or -0.001 Å)?
    - full correlation?

- high-res. IR (Budon, Mkadmi, Bürger, Pierre, 1999, Dijon/ Wuppertal, FR/DE) r<sub>0</sub> = 2.1958 Å
- GED (Berger, Mitzel, Hayes, **2010**, Bielefeld, DE)
  r<sub>g</sub> = 2.1994(3) Å @ 100°C

We remember Brassington, Edwards, Long:

- (100) -> 22%, (010) -> 80%, (001) -> 93%
- $J_{max.} = 58$
- symmetric top is not Boltzmann-populated
- SHRINK would give  $r_{a3,1} = 2.196$  Å (but 2.1860 Å is the best theor. value) => we stick to  $r_g$ !

GED (Berger, Mitzel, Hayes, **2010**, Bielefeld, DE)
 r<sub>q</sub> = 2.1994(3) Å @ 100°C



• GED (Berger, Mitzel, Hayes, **2010**, Bielefeld, DE) *r<sub>a</sub>* = 2.1994(3) Å @ 100°C



the height in the equilateral P trianlge:

2.1994(3) \* (3)<sup>-1/2</sup> / 2 Å =

1.9047 Å

GED (Berger, Mitzel, Hayes, **2010**, Bielefeld, DE)
 r<sub>g</sub> = 2.1994(3) Å @ 100°C



GED (Berger, Mitzel, Hayes, **2010**, Bielefeld, DE)
 r<sub>g</sub> = 2.1994(3) Å @ 100°C



GED (Berger, Mitzel, Hayes, **2010**, Bielefeld, DE)
 r<sub>g</sub> = 2.1994(3) Å @ 100°C



## P<sub>4</sub> summary

- *r*<sub>0</sub> = 2.1958 Å
- *r<sub>e</sub>* = 2.1860 Å
  - relativity could effect by -0.001 Å
  - higher correlation than CCSD(T) was never tested,
    - T<sub>1</sub> = 0.018 (probably ok, Q => maybe very small elongation?)
- $r_0 r_e$  corrections are very problematic
  - Non-Boltzmann population of sph. top
  - $J_{max} = 58$  (@ exp. temperatures)
  - best calc. Value of 0.005 Å is yet 100% off
- $r_g = 2.1994(3) \text{ Å}$ 
  - no three-atom scattering (probably no major influence)
  - Shrink corrections to r<sub>h1</sub> may be implausible:
    (100), (010) and (001) -> 22, 80 and 93 % occupation (the ensemble is not well represented by (000) at exp. temperatures
  - moreover the same as for  $r_0 r_e$  applies for  $r_{h1}$  and  $r_{a3,1}$  corrections
  - QZVPP/ B3-LYP, TPSS, B97-D3, PBE0: 2.204, 2.016, 2.194, 2.184 Å DFT methods are of unpredictable reliability.

## AsP<sub>3</sub> experimental I

• GED (JACS 132 (**2010**) 8459)  $r_g$  (P-P) = 2.1949(28),  $r_g$  (As-P) = 2.3041(12) Å @ 115°C



### AsP<sub>3</sub> experimental I

• GED (JACS 132 (**2010**) 8459)  $r_g$  (P-P) = 2.1949(28),  $r_g$  (As-P) = 2.3041(12) Å @ 115°C



### AsP<sub>3</sub> experimental I

• GED (JACS 132 (**2010**) 8459)  $r_g$  (P-P) = 2.1949(28),  $r_g$  (As-P) = 2.3041(12) Å @ 115°C



## AsP<sub>3</sub> theoretical

P<sub>4</sub>: best method : F12-CCSD(T)(full)/aug-cc-pwCVQZ => **2.1860** Å slightly smaller: F12-CCSD(T)(4ef)/cc-pwCVQZ => 2.1859 Å

AsP<sub>3</sub> => 
$$r_e$$
 (P-P) = **2.190** Å,  $r_e$  (P-As) = **2.307** Å

T<sub>1</sub> diagnostic = 0.018 => correlation could be close to exact

**but**: relativity could have larger influence (As-P would shrink) – no methods available as yet for F12-CCSD(T).

(DFT methods are of unpredictable reliability, MP2(fc) is too inaccurate)

MW (J. Mol. Spect. 278 (**2012**) 68):  $B_0 = 2201.394$  MHz => "scaled GED distances to fit  $B_0$ ":

 $r_0$  (P-P) = 2.201 Å;  $r_0$  (P-As) = 2.311 Å

a problem for comparability might be again highly populated rotational and vibrational states in GED exp.

## AsP<sub>3</sub> summary

- F12-CCSD(T)/cc-pCVQZ: r<sub>e</sub> (P-P) = 2.190 Å, r<sub>e</sub> (P-As) = 2.307 Å close to BO-value; infuence of higher correlation could be, relativity should be tested!
- DFT cannot contribute to increase accuracy to +- 0.001 Å
- GED [r<sub>g</sub> (P-P, P-As) = 2.195, 2.304 Å] should be re-refined with three-atom scattering, and MW B<sub>0</sub> constant
- High resolution vibrational spectroscopy could be attempted to determine also A<sub>0</sub> and finally accurate r<sub>0</sub> for P-P and As-P
- $r_0 r_e$  corrections need to be calculated

#### Conclusion

There are still open questions regarding the gas phase structure Parameters of  $P_4$  and  $AsP_3$ . Further investigations are required.

#### Thank you for your attention!