Development of refinement procedures in gas electron diffraction

Yury V. Vishnevskiy

15th ESGED, Frauenchiemsee, 27 June 2013

Current GED method

Automation /

routine investigations

(like routine XRD) Refine everything, what can be evaporated. Improving Accuracy + Precision

fine investigations

Utilization of additional experimental data. Limited to small and symmetric molecules.

Monte Carlo in UNEX 1.6

Universität Bielefeld

Subject to randomize:

Monte Carlo: Histograms

Universität Bielefeld

CHEMISTRY

FULL PAPER

DOI: 10.1002/chem.201200264

Structure and Bonding Nature of the Strained Lewis Acid 3-Methyl-1boraadamantane: A Case Study Employing a New Data-Analysis Procedure in Gas Electron Diffraction

Yury V. Vishnevskiy,^{*[a]} Maxim A. Abaev,^[b] Anatolii N. Rykov,^[b] Mikhail E. Gurskii,^[c] Pavel A. Belyakov,^[c] Sergey Yu. Erdyakov,^[c] Yuri N. Bubnov,^[d] and Norbert W. Mitzel^{*[a]}

Bartel's "predicate observations":

$$Q = \sum [sM(s)^{e} - sM(s)^{mod}]^{2} + \alpha \sum_{i} w_{i} (p_{i}^{0} - p_{i}^{mod})^{2} \rightarrow min$$

	This work	SARACEN
Refined parameters	Cartesian coordinates	Internal parameters and their combinations
Restraints	Internal parameters	Same as refined parameters
Weights	All w_i are equal	Adjusted to formal precision

L. S. Bartell, D. J. Romenesko, T. C. Wong, in *Molecular Structure by Diffraction Methods*, The Chemical Society, London, 1975, Vol. 3, pp 72 – 79.

A. J. Blake, P. T. Brain, H. McNab, J. Miller, C. A. Morrison, S. Parsons, D. W. H. Rankin, H. E. Robertson, B. A. Smart, J. Phys. Chem., 1996, 100, 12280.

A. N. Tychonoff, Dokl. Akad. Nauk SSSR, 1943, 39, 195.

Estimated total errors include:

- 1. LSQ std. deviations.
- 2. Scale errors.
- 3. Effects of geom. model.
- 4. Ambiguity in α .
- 5. Inaccuracy in constraints and restraints.

Parameter	GED Conventional	GED with Regularization
<i>r_e</i> (B1-C2)	1.561(10)	1.562(7)
<i>r_e</i> (B1-C8)	1.561(10)	1.553(4)
<i>r_e</i> (C2-C3)	1.575(10)	1.580(8)
<i>r_e</i> (C4-C5)	1.531(6)	1.538(10)
<i>r_e</i> (C3-C11)	1.521(6)	1.524(13)
$r_e(\text{C-H})_{av}$	1.099(8)	1.097(11)
α(C2-B1-C8)	116.4(50)	116.3(2)
α (C8-B1-C9)	116.6(115)	116.8(3)
α (B1-C2-C3)	101.2(21)	100.0(8)
α (C2-C3-C11)	106.2(81)	110.2(8)
φ(B1-C2-C3-C10)	-58.7(21)	-59.1(6)
$\varphi(B1-C8-C7-C10)$	59.0(79)	60.4(2)
l_1	0.052(2)	0.051(1)
l_6	0.087(19)	0.093(6)

Degree of Regularization

Cartesian Coordinates

UNEX 1.6

Regularization of internal coordinates:

$$Q = \sum \left[sM(s)^e - sM(s)^{mod} \right]^2 + \alpha \sum_i w_i \left(p_i^0 - p_i^{mod} \right)^2 \rightarrow min$$

Regularization of Cartesian coordinates:

$$Q = \sum \left[sM(s)^{e} - sM(s)^{mod} \right]^{2} + \alpha \sum_{i}^{3N} w_{i} \left(x_{i}^{0} - x_{i}^{mod} \right)^{2} \rightarrow min$$

Parameter	GED Conventional	GED with Regularization	GED with Regularization of Cartesian Coordinates
r _e (B1-C2)	1.561(10)	1.562(7)	1.565(4)
r _e (B1-C8)	1.561(10)	1.553(4)	1.567(3)
r _e (C2-C3)	1.575(10)	1.580(8)	1.584(4)
$r_{e}(C4-C5)$	1.531(6)	1.538(10)	1.517(3)
r _e (C3-C11)	1.521(6)	1.524(13)	1.523(3)
α(C2-B1-C8)	116.4(50)	116.3(2)	115.7(1)
α(C8-B1-C9)	116.6(115)	116.8(3)	116.5(2)

Mixtures of Conformers: tBu-SNO

Parameters	anti		syn	
	Conventional	Regularization	Conventional	Regularization
r_e (O-N), Å	1.198(2)	1.199(2)	1.206(2)	1.207(4)
r_e (N-S), Å	1.770(4)	1.790(6)	1.743(4)	1.744(5)
r_e (S-C), Å	1.826(4)	1.807(5)	1.826(4)	1.820(3)
<i>r_e</i> (С-С), Å	1.520(3)	1.517(3)	1.522(3)	1.519(2)
$\alpha_e(\text{O-N-S}), \circ$	113.7(4)	114.0(4)	117.0(4)	118.1(3)
$\alpha_{e}(\text{N-S-C}), \circ$	97.2(7)	96.1(3)	109.2(7)	108.8(3)
x, %	83(3)	87(3)	17(3)	13(3)

Adding Rotational Constants: C₆H₅NO₂

Universität Bielefeld

$$Q = \sum [sM(s)^{e} - sM(s)^{mod}]^{2} + \alpha \sum_{i}^{3N} w_{i} (x_{i}^{0} - x_{i}^{mod})^{2} + \beta \sum_{i} w_{i} (B_{i}^{e} - B_{i}^{mod})^{2} \rightarrow min$$

	Exp.	Delta	
A_{e}	3968.078	-0.003	MHz
B _e	1286.920	-0.002	MHz
C _e	972.661	0.070	MHz

Parameter	Conventional	Cartesian coord. + Regularization	Cartesian coord. + Regularization + Rot. constants
r_e (N-O), Å	1.2227(4)	1.2224(7)	1.2226(6)
r_e (C-N), Å	1.4640(16)	1.4639(24)	1.4619(21)
$r_e(\text{C-C(N)}), \text{ Å}$	1.3839(7)	1.3836(18)	1.3840(17)
$\alpha_e(\text{O-N-O}), \circ$	124.10(13)	123.87(17)	123.90(19)
$\alpha_e(\text{C-C(N)-C}), \circ$	123.08(17)	122.32(21)	122.98(21)

O. V. Dorofeeva, Yu. Vishnevskiy, N. Vogt, J. Vogt, L. Khristenko, S. Krasnoshchekov, I. Shishkov, I. Hargittai, L. Vilkov, *Struct. Chem.*, 2007, 18, 739.

I. It is possible ...

- ... to refine structures in Cartesian coordinates!
- ... to regularize Cartesian coordinates.
- ... to refine models with mixtures.
- ... to use additional rotational constants.
- **II.** Typical **precision** of refined parameters is comparable to that from XRD (50% of XRD structures in 2012 have $\sigma(C-C) > 0.005$ Å).
- **III.** We are ready to **refine automatically** large molecules.
- **IV. Accuracy** of restraints plays minor role.
- V. Dynamic models with large-amplitude motions are hardly possible.

IV. ToDo:

- 1). Project out rotations&translations.
- 2). Find appropriate scale to express "amount of experiment" in refined parameters.
- 3). Implement automatic calculation of vibrational parameters.

Thank you for attention!