Appendix 2

Moments of Inertia of Molecules

In the tables below, we find the expressions of moments of inertia for several common forms of molecules.

m is the total mass of molecule, m_A is the mass of atom A.

Rotor	Form	I
Diatomic molecules	$R \longrightarrow R$ m_{A} m_{B}	$\frac{m_{\rm A}m_{\rm B}}{m_{\rm A}+m_{\rm B}}R^2$
Linear rotor	m_A m_B m_C	$m_{\rm A}R^2 + m_{\rm C}R'^2 - \frac{(m_A R - m_C R')^2}{m}$
Linear rotor	$R \longrightarrow R \longrightarrow R \longrightarrow R$	$2m_{\rm A}R^2$
Symmetrical rotor	$m_{\rm C}$ $m_{\rm B}$ $m_{\rm A}$ $m_{\rm A}$ $m_{\rm A}$	$I_{II} = 2m_{A}R^{2} (1 - \cos \theta)$ $I_{=} = m_{A}R^{2} (1 - \cos \theta)$ $+ \frac{m_{A}}{m} (m_{A} + m_{C})R^{2} (1 + 2\cos \theta)$ $+ \frac{m_{C}R^{2}}{m} \left\{ \frac{(3m_{A} + m_{B})R' + (3m_{C}R)R'}{m} \left[\frac{1}{3} (1 + 2\cos \theta) \right]^{1/2} \right\}$

Rotor	Form	I
Symmetrical rotor	m_{A} m_{A} m_{A} m_{A}	$I_{II} = 2m_{A}R^{2}(1 - \cos\theta)$ $I_{\perp} = m_{A}R^{2}(1 - \cos\theta)$ $+ \frac{m_{A}m_{B}}{m}R^{2}(1 + 2\cos\theta)$
Symmetrical rotor	m _A m _B m _A m _A m _C m _C	$I_{\rm II} = 4m_{\rm A}R^2$ $I_{\perp} = 2m_{\rm A}R^2 + 2m_{\rm C}R^{2}$
Spherical rotor	m_A m_B m_A m_A	$\frac{8}{3} m_{\rm A} R^2$
Spherical rotor	m _A m _A m _A m _A m _A	$4m_{\rm A}R^2$